Observable Error Bounds of the Time-splitting Scheme for
Quantum-Classical Molecular Dynamics
- URL: http://arxiv.org/abs/2108.08245v2
- Date: Thu, 13 Oct 2022 17:36:11 GMT
- Title: Observable Error Bounds of the Time-splitting Scheme for
Quantum-Classical Molecular Dynamics
- Authors: Di Fang and Albert Tres
- Abstract summary: We prove an additive observable error bound of Schwartz observables for the proposed time-splitting schemes.
We establish a uniform-in-$h$ observable error bound, which allows an $mathcalO(1)$ time step to accurately capture the physical observable.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantum-classical molecular dynamics, as a partial classical limit of the
full quantum Schr\"odinger equation, is a widely used framework for quantum
molecular dynamics. The underlying equations are nonlinear in nature,
containing a quantum part (represents the electrons) and a classical part
(stands for the nuclei). An accurate simulation of the wave function typically
requires a time step comparable to the rescaled Planck constant $h$, resulting
in a formidable cost when $h\ll 1$. We prove an additive observable error bound
of Schwartz observables for the proposed time-splitting schemes based on
semiclassical analysis, which decreases as $h$ becomes smaller. Furthermore, we
establish a uniform-in-$h$ observable error bound, which allows an
$\mathcal{O}(1)$ time step to accurately capture the physical observable
regardless of the size of $h$. Numerical results verify our estimates.
Related papers
- Scattering Neutrinos, Spin Models, and Permutations [42.642008092347986]
We consider a class of Heisenberg all-to-all coupled spin models inspired by neutrino interactions in a supernova with $N$ degrees of freedom.
These models are characterized by a coupling matrix that is relatively simple in the sense that there are only a few, relative to $N$, non-trivial eigenvalues.
arXiv Detail & Related papers (2024-06-26T18:27:15Z) - The Timescales of Quantum Breaking [0.0]
A classical description generically breaks down after a finite quantum break-time $t_q$.
We construct a new prototype model that features numerous dynamically accessible quantum modes.
As an outlook, we point out possibilities for transferring our results to black holes and expanding spacetimes.
arXiv Detail & Related papers (2023-06-15T18:00:02Z) - Quantum simulation of partial differential equations via
Schrodingerisation [31.986350313948435]
We present a simple new way to simulate general linear partial differential equations via quantum simulation.
Using a simple new transform, referred to as the warped phase transformation, any linear partial differential equation can be recast into a system of Schrodinger's equations.
This can be seen directly on the level of the dynamical equations without more sophisticated methods.
arXiv Detail & Related papers (2022-12-28T17:32:38Z) - Universality and its limits in non-Hermitian many-body quantum chaos
using the Sachdev-Ye-Kitaev model [0.0]
Spectral rigidity in Hermitian quantum chaotic systems signals the presence of dynamical universal features at timescales that can be much shorter than the Heisenberg time.
We study the analog of this timescale in many-body non-Hermitian quantum chaos by a detailed analysis of long-range spectral correlators.
arXiv Detail & Related papers (2022-11-03T08:45:19Z) - Uniform observable error bounds of Trotter formulae for the semiclassical Schrödinger equation [0.0]
We show that the computational cost for a class of observables can be much lower than the state-of-the-art bounds.
We improve the additive observable error bounds to uniform-in-$h$ observable error bounds.
This is, to our knowledge, the first uniform observable error bound for semiclassical Schr"odinger equation.
arXiv Detail & Related papers (2022-08-16T21:34:49Z) - Emergent Quantum Mechanics at the Boundary of a Local Classical Lattice
Model [0.0]
We formulate a conceptually new model in which quantum mechanics emerges from classical mechanics.
We analytically estimate how much the model deviates from quantum mechanics.
arXiv Detail & Related papers (2022-07-19T18:00:00Z) - On quantum algorithms for the Schr\"odinger equation in the
semi-classical regime [27.175719898694073]
We consider Schr"odinger's equation in the semi-classical regime.
Such a Schr"odinger equation finds many applications, including in Born-Oppenheimer molecular dynamics and Ehrenfest dynamics.
arXiv Detail & Related papers (2021-12-25T20:01:54Z) - The classical limit of Schr\"{o}dinger operators in the framework of
Berezin quantization and spontaneous symmetry breaking as emergent phenomenon [0.0]
A strict deformation quantization is analysed on the classical phase space $bR2n$.
The existence of this classical limit is in particular proved for ground states of a wide class of Schr"odinger operators.
The support of the classical state is included in certain orbits in $bR2n$ depending on the symmetry of the potential.
arXiv Detail & Related papers (2021-03-22T14:55:57Z) - The Time-Evolution of States in Quantum Mechanics [77.34726150561087]
It is argued that the Schr"odinger equation does not yield a correct description of the quantum-mechanical time evolution of states of isolated (open) systems featuring events.
A precise general law for the time evolution of states replacing the Schr"odinger equation is formulated within the so-called ETH-Approach to Quantum Mechanics.
arXiv Detail & Related papers (2021-01-04T16:09:10Z) - Qubit regularization of asymptotic freedom [35.37983668316551]
Heisenberg-comb acts on a Hilbert space with only two qubits per spatial lattice site.
We show that the model reproduces the universal step-scaling function of the traditional model up to correlation lengths of 200,000 in lattice units.
We argue that near-term quantum computers may suffice to demonstrate freedom.
arXiv Detail & Related papers (2020-12-03T18:41:07Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.