論文の概要: Reservoir Computing with Diverse Timescales for Prediction of Multiscale
Dynamics
- arxiv url: http://arxiv.org/abs/2108.09446v1
- Date: Sat, 21 Aug 2021 06:52:21 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-24 15:27:12.337986
- Title: Reservoir Computing with Diverse Timescales for Prediction of Multiscale
Dynamics
- Title(参考訳): 多様な時間スケールを用いた貯留層計算によるマルチスケールダイナミクスの予測
- Authors: Gouhei Tanaka, Tadayoshi Matsumori, Hiroaki Yoshida, Kazuyuki Aihara
- Abstract要約: 異種リークインテグレータニューロンのリカレントネットワークを用いて,様々な時間スケールの貯水池計算モデルを提案する。
高速なカオス力学系を用いた予測タスクにおいて、提案モデルが既存の標準モデルよりも高いポテンシャルを持つことを示す。
本分析により, 対象力学の各成分の生成に必要な時間尺度は, モデルトレーニングにより, 貯水池力学から適切な, 柔軟に選択されることが明らかとなった。
- 参考スコア(独自算出の注目度): 5.172455794487599
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning approaches have recently been leveraged as a substitute or
an aid for physical/mathematical modeling approaches to dynamical systems. To
develop an efficient machine learning method dedicated to modeling and
prediction of multiscale dynamics, we propose a reservoir computing model with
diverse timescales by using a recurrent network of heterogeneous leaky
integrator neurons. In prediction tasks with fast-slow chaotic dynamical
systems including a large gap in timescales of their subsystems dynamics, we
demonstrate that the proposed model has a higher potential than the existing
standard model and yields a performance comparable to the best one of the
standard model even without an optimization of the leak rate parameter. Our
analysis reveals that the timescales required for producing each component of
target dynamics are appropriately and flexibly selected from the reservoir
dynamics by model training.
- Abstract(参考訳): 機械学習のアプローチは最近、動的システムに対する物理的・数学的モデリングアプローチの代替または補助として活用されている。
マルチスケールダイナミックスのモデリングと予測に特化した効率的な機械学習手法を開発するために,異種漏洩積分体ニューロンの繰り返しネットワークを用いて,様々な時間スケールの貯水池計算モデルを提案する。
サブシステムダイナミクスの時間スケールに大きなギャップを含む高速でカオス的な動的システムの予測タスクにおいて,提案モデルが既存の標準モデルよりも高いポテンシャルを持ち,リーク率パラメータの最適化を必要とせずとも,標準モデルに匹敵する性能が得られることを実証する。
解析の結果, モデル学習により, 対象動力学の各成分を生産するのに要する時間スケールが, 適切に柔軟に選択できることが判明した。
関連論文リスト
- eXponential FAmily Dynamical Systems (XFADS): Large-scale nonlinear Gaussian state-space modeling [9.52474299688276]
非線形状態空間グラフィカルモデルのための低ランク構造化変分オートエンコーダフレームワークを提案する。
我々のアプローチは、より予測的な生成モデルを学ぶ能力を一貫して示している。
論文 参考訳(メタデータ) (2024-03-03T02:19:49Z) - CoDBench: A Critical Evaluation of Data-driven Models for Continuous
Dynamical Systems [8.410938527671341]
微分方程式を解くための11の最先端データ駆動モデルからなる総合ベンチマークスイートであるCodBenchを紹介する。
具体的には、Viz.、フィードフォワードニューラルネットワーク、ディープオペレータ回帰モデル、周波数ベースのニューラル演算子、トランスフォーマーアーキテクチャの4つの異なるカテゴリを評価する。
我々は、学習におけるオペレータの能力、ゼロショット超解像、データ効率、ノイズに対する堅牢性、計算効率を評価する広範な実験を行う。
論文 参考訳(メタデータ) (2023-10-02T21:27:54Z) - Cheap and Deterministic Inference for Deep State-Space Models of
Interacting Dynamical Systems [38.23826389188657]
本稿では,基礎となる相互作用力学系をモデル化するために,グラフニューラルネットワークを用いた深部状態空間モデルを提案する。
予測分布はマルチモーダルであり、ガウス混合モデルの形をしており、ガウス成分のモーメントは決定論的モーメントマッチングルールによって計算できる。
我々のモーメントマッチングスキームはサンプルのない推論に利用でき、モンテカルロの代替案と比較してより効率的で安定した訓練がもたらされる。
論文 参考訳(メタデータ) (2023-05-02T20:30:23Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Decomposed Linear Dynamical Systems (dLDS) for learning the latent
components of neural dynamics [6.829711787905569]
本稿では,時系列データの非定常および非線形の複雑なダイナミクスを表現した新しい分解力学系モデルを提案する。
我々のモデルは辞書学習によって訓練され、最近の結果を利用してスパースベクトルを時間とともに追跡する。
連続時間と離散時間の両方の指導例において、我々のモデルは元のシステムによく近似できることを示した。
論文 参考訳(メタデータ) (2022-06-07T02:25:38Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
データからシステムの微分可能なダイナミクスモデルを学習するために、機械学習技術を使用します。
ニューラルネットワークは、大規模な時間的地平線に対して、非常に非線形な振る舞いを正確にモデル化できることが示される。
ハードウェア実験において、学習したモデルがSpotとRadio- controlled (RC)の両方の複雑な力学を表現できることを実証した。
論文 参考訳(メタデータ) (2022-04-09T22:07:34Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Model-Free Prediction of Chaotic Systems Using High Efficient
Next-generation Reservoir Computing [4.284497690098487]
低次元および大規模カオス系のモデルフリーな述語を実現するために,新しい貯水池計算のパラダイムを提案する。
ロレンツ方程式と倉本-シヴァシンスキー方程式を力学系の古典的な2つの例として、数値シミュレーションを行った。
その結果,最新の貯水池計算手法よりも予測タスクが優れていることがわかった。
論文 参考訳(メタデータ) (2021-10-19T12:49:24Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Trajectory-wise Multiple Choice Learning for Dynamics Generalization in
Reinforcement Learning [137.39196753245105]
本稿では,動的一般化のためのマルチヘッドダイナミックスモデルを学習するモデルベース強化学習アルゴリズムを提案する。
文脈学習は,過去の経験から得られる動的情報からコンテキスト潜在ベクトルにエンコードする。
提案手法は,最先端のRL法と比較して,様々な制御タスクにおいて優れたゼロショット一般化性能を示す。
論文 参考訳(メタデータ) (2020-10-26T03:20:42Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
我々は、機械学習にインスパイアされたモデルと物理モデルを組み合わせた、新しいハイブリッドモデリングアプローチの概要を述べる。
このようなモデルをリアルタイム診断に利用しています。
論文 参考訳(メタデータ) (2020-03-04T00:44:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。