Reducing of the Uncertainty Product of Coherent Light through Multi-Photon Interference
- URL: http://arxiv.org/abs/2404.00496v1
- Date: Sat, 30 Mar 2024 23:28:07 GMT
- Title: Reducing of the Uncertainty Product of Coherent Light through Multi-Photon Interference
- Authors: Sangbae Kim, Joachim Stohr, Fabian Rotermund, Byoung S. Ham,
- Abstract summary: By use of a Mach-Zehnder interferometer, we observe a fringe width reduction of the conventional interference pattern.
Our scheme does not require squeezed or entangled light to overcome the standard quantum limit.
- Score: 10.871383127225156
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We demonstrate theoretically and experimentally how the diffraction and interferometric resolution limit for single-mode coherent cw laser light can be overcome by multi-photon interference. By use of a Mach-Zehnder interferometer, operated in the single input and single or double output port geometries, we observe a fringe width reduction of the conventional interference pattern, predicted by the wave or single photon quantum theory, by a factor of up to $1/\sqrt{2N}$ through coincident detection of $N=2,3,4$ photons. Our scheme does not require squeezed or entangled light to overcome the standard quantum limit and greatly facilitates precision interferometry experiments.
Related papers
- Cavity-enhanced induced coherence without induced emission [0.0]
This paper presents a theoretical study of the enhancement of Zou-Wang-Mandel (ZWM) interferometry.
It shows the capability to generate interference effects between single signal photons via indistinguishability between the entangled idler photons.
arXiv Detail & Related papers (2024-08-13T05:13:44Z) - Strong coupling between a single photon and a photon pair [43.14346227009377]
We report an experimental observation of the strong coupling between a single photon and a photon pair in an ultrastrongly-coupled circuit-QED system.
Results represent a key step towards a new regime of quantum nonlinear optics.
arXiv Detail & Related papers (2024-01-05T10:23:14Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Controlling Frequency-Domain Hong-Ou-Mandel Interference via
Electromagnetically Induced Transparency [5.467400475482669]
Hong-Ou-Mandel (HOM) interference is a compelling quantum phenomenon that demonstrates the nonclassical nature of single photons.
In this study, we investigate an electromagnetically induced transparency-based double-$Lambda$ four-wave mixing system.
arXiv Detail & Related papers (2023-02-14T08:22:09Z) - An Easier-To-Align Hong-Ou-Mandel Interference Demonstration [0.0]
Hong-Ou-Mandel interference experiment is a fundamental demonstration of nonclassical interference.
Experiment involves the interference of two photons reaching a symmetric beamsplitter.
arXiv Detail & Related papers (2023-01-17T20:12:03Z) - Quantum fluctuations in the small Fabry-Perot interferometer [77.34726150561087]
We study the small, of the size of the order of the wavelength, interferometer with the main mode excited by a quantum field from a nano-LED or a laser.
We find the field and the photon number fluctuation spectra inside and outside the interferometer.
Results help the study, design, manufacture, and use small elements of quantum optical integrated circuits.
arXiv Detail & Related papers (2022-12-27T10:02:25Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Quantifying n-photon indistinguishability with a cyclic integrated
interferometer [40.24757332810004]
We report on a universal method to measure the genuine indistinguishability of n-photons.
Our approach relies on a low-depth cyclic multiport interferometer with N = 2n modes.
We experimentally demonstrate this technique for a 8-mode integrated interferometer fabricated using femtosecond laser micromachining.
arXiv Detail & Related papers (2022-01-31T16:30:52Z) - Theoretical analysis of a Polarized Two-Photon Michelson Interferometer
with Broadband Chaotic Light [0.061322748107472326]
We study two-photon interference of broadband chaotic light in a Michelson interferometer with two-photon-absorption detector.
The polarization is another dimension, as well as time and space, to tune the interference pattern in the two-photon interference process.
arXiv Detail & Related papers (2021-08-22T13:26:54Z) - Symmetry allows for distinguishability in totally destructive
many-particle interference [52.77024349608834]
We investigate, in a four photon interference experiment in a laser-written waveguide structure, how symmetries control the suppression of many-body output events of a $J_x$ unitary.
We show that totally destructive interference does not require mutual indistinguishability between all, but only between symmetrically paired particles.
arXiv Detail & Related papers (2021-02-19T16:37:19Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.