MCUa: Multi-level Context and Uncertainty aware Dynamic Deep Ensemble
for Breast Cancer Histology Image Classification
- URL: http://arxiv.org/abs/2108.10709v1
- Date: Tue, 24 Aug 2021 13:18:57 GMT
- Title: MCUa: Multi-level Context and Uncertainty aware Dynamic Deep Ensemble
for Breast Cancer Histology Image Classification
- Authors: Zakaria Senousy, Mohammed M. Abdelsamea, Mohamed Medhat Gaber, Moloud
Abdar, U Rajendra Acharya, Abbas Khosravi, and Saeid Nahavandi
- Abstract summary: We propose a novel CNN called Multi-level Context and Uncertainty aware (MCUa) dynamic deep learning ensemble model.
MCUamodel has achieved a high accuracy of 98.11% on a breast cancer histology image dataset.
- Score: 18.833782238355386
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Breast histology image classification is a crucial step in the early
diagnosis of breast cancer. In breast pathological diagnosis, Convolutional
Neural Networks (CNNs) have demonstrated great success using digitized
histology slides. However, tissue classification is still challenging due to
the high visual variability of the large-sized digitized samples and the lack
of contextual information. In this paper, we propose a novel CNN, called
Multi-level Context and Uncertainty aware (MCUa) dynamic deep learning ensemble
model.MCUamodel consists of several multi-level context-aware models to learn
the spatial dependency between image patches in a layer-wise fashion. It
exploits the high sensitivity to the multi-level contextual information using
an uncertainty quantification component to accomplish a novel dynamic ensemble
model.MCUamodelhas achieved a high accuracy of 98.11% on a breast cancer
histology image dataset. Experimental results show the superior effectiveness
of the proposed solution compared to the state-of-the-art histology
classification models.
Related papers
- CC-DCNet: Dynamic Convolutional Neural Network with Contrastive Constraints for Identifying Lung Cancer Subtypes on Multi-modality Images [13.655407979403945]
We propose a novel deep learning network designed to accurately classify lung cancer subtype with multi-dimensional and multi-modality images.
The strength of the proposed model lies in its ability to dynamically process both paired CT-pathological image sets and independent CT image sets.
We also develop a contrastive constraint module, which quantitatively maps the cross-modality associations through network training.
arXiv Detail & Related papers (2024-07-18T01:42:00Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - NASDM: Nuclei-Aware Semantic Histopathology Image Generation Using
Diffusion Models [3.2996723916635267]
First-of-its-kind nuclei-aware semantic tissue generation framework (NASDM)
NASDM can synthesize realistic tissue samples given a semantic instance mask of up to six different nuclei types.
These synthetic images are useful in applications in pathology, validation of models, and supplementation of existing nuclei segmentation datasets.
arXiv Detail & Related papers (2023-03-20T22:16:03Z) - Application of Transfer Learning and Ensemble Learning in Image-level
Classification for Breast Histopathology [9.037868656840736]
In Computer-Aided Diagnosis (CAD), traditional classification models mostly use a single network to extract features.
This paper proposes a deep ensemble model based on image-level labels for the binary classification of benign and malignant lesions.
Result: In the ensemble network model with accuracy as the weight, the image-level binary classification achieves an accuracy of $98.90%$.
arXiv Detail & Related papers (2022-04-18T13:31:53Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Dual Convolutional Neural Networks for Breast Mass Segmentation and
Diagnosis in Mammography [18.979126709943085]
We introduce a novel deep learning framework for mammogram image processing, which computes mass segmentation and simultaneously predict diagnosis results.
Our method is constructed in a dual-path architecture that solves the mapping in a dual-problem manner.
Experimental results show that DualCoreNet achieves the best mammography segmentation and classification simultaneously, outperforming recent state-of-the-art models.
arXiv Detail & Related papers (2020-08-07T02:23:36Z) - Breast Cancer Histopathology Image Classification and Localization using
Multiple Instance Learning [2.4178424543973267]
Computer-aided pathology to analyze microscopic histopathology images for diagnosis can bring the cost and delays of diagnosis down.
Deep learning in histopathology has attracted attention over the last decade of achieving state-of-the-art performance in classification and localization tasks.
We present classification and localization results on two publicly available BreakHIS and BACH dataset.
arXiv Detail & Related papers (2020-02-16T10:29:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.