論文の概要: XCI-Sketch: Extraction of Color Information from Images for Generation
of Colored Outlines and Sketches
- arxiv url: http://arxiv.org/abs/2108.11554v1
- Date: Thu, 26 Aug 2021 02:27:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-27 14:16:10.782028
- Title: XCI-Sketch: Extraction of Color Information from Images for Generation
of Colored Outlines and Sketches
- Title(参考訳): XCI-Sketch:カラーアウトラインとスケッチの生成のための画像からのカラー情報の抽出
- Authors: Harsh Rathod, Manisimha Varma, Parna Chowdhury, Sameer Saxena, V
Manushree, Ankita Ghosh, Sahil Khose
- Abstract要約: そこで本研究では,彩色スケッチを模倣する2つの手法を提案する。
第1の方法は、k平均色クラスタリングによる画像処理技術を適用することで、カラーアウトラインスケッチを描画する。
第2の方法は、生成逆数ネットワークを用いて、以前は観測されていなかった画像から色付きスケッチを生成できるモデルを開発する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sketches are a medium to convey a visual scene from an individual's creative
perspective. The addition of color substantially enhances the overall
expressivity of a sketch. This paper proposes two methods to mimic human-drawn
colored sketches by utilizing the Contour Drawing Dataset. Our first approach
renders colored outline sketches by applying image processing techniques aided
by k-means color clustering. The second method uses a generative adversarial
network to develop a model that can generate colored sketches from previously
unobserved images. We assess the results obtained through quantitative and
qualitative evaluations.
- Abstract(参考訳): スケッチは、個人の創造的視点から視覚的なシーンを伝える媒体である。
色を加えることでスケッチ全体の表現性が大幅に向上する。
本稿では,輪郭描画データセットを用いて,人物が描いたスケッチを模倣する2つの手法を提案する。
まず,k-means色クラスタリングによる画像処理手法を適用し,カラーアウトラインの描画を行う。
第2の方法は、生成逆数ネットワークを用いて、以前に観測されなかった画像から色付きスケッチを生成するモデルを開発する。
定量的および定性的な評価によって得られた結果を評価する。
関連論文リスト
- Paint Bucket Colorization Using Anime Character Color Design Sheets [72.66788521378864]
ネットワークがセグメント間の関係を理解することができる包摂的マッチングを導入する。
ネットワークのトレーニングパイプラインは、カラー化と連続フレームカラー化の両方のパフォーマンスを著しく向上させる。
ネットワークのトレーニングをサポートするために、PaintBucket-Characterというユニークなデータセットを開発しました。
論文 参考訳(メタデータ) (2024-10-25T09:33:27Z) - Semi-supervised reference-based sketch extraction using a contrastive learning framework [6.20476217797034]
本研究では,対象とする参照スケッチのスタイルを非ペアデータトレーニングで模倣できる,新しいマルチモーダルスケッチ抽出手法を提案する。
提案手法は,定量評価と定性評価の両面において,最先端のスケッチ抽出法と未完成画像翻訳法より優れる。
論文 参考訳(メタデータ) (2024-07-19T04:51:34Z) - ColorizeDiffusion: Adjustable Sketch Colorization with Reference Image and Text [5.675944597452309]
事前学習したCLIP画像エンコーダの異なる画像トークンを利用した画像誘導潜時拡散モデルの2つのバリエーションを紹介する。
重み付きテキスト入力を用いて結果の逐次的調整を行うための,対応する操作手法を提案する。
論文 参考訳(メタデータ) (2024-01-02T22:46:12Z) - Towards Interactive Image Inpainting via Sketch Refinement [13.34066589008464]
そこで本研究では,SketchRefinerと呼ばれる2段階画像のインペイント手法を提案する。
第1段階では,クロス相関損失関数を用いて,ユーザが提供するスケッチを堅牢に校正し,洗練する。
第2段階では,特徴空間の抽象的スケッチから情報的特徴を抽出し,着色過程を変調する。
論文 参考訳(メタデータ) (2023-06-01T07:15:54Z) - Sketch2Saliency: Learning to Detect Salient Objects from Human Drawings [99.9788496281408]
本研究では,スケッチを弱いラベルとして使用して,画像中の有能な物体を検出する方法について検討する。
これを実現するために,与えられた視覚写真に対応する逐次スケッチ座標を生成することを目的としたフォト・ツー・スケッチ生成モデルを提案する。
テストは、私たちの仮説を証明し、スケッチベースの唾液度検出モデルが、最先端技術と比較して、競争力のあるパフォーマンスを提供する方法を明確にします。
論文 参考訳(メタデータ) (2023-03-20T23:46:46Z) - Sketch-Guided Scenery Image Outpainting [83.6612152173028]
本稿では,スケッチ誘導露光を行うエンコーダデコーダに基づくネットワークを提案する。
全体的アライメントモジュールを適用して、合成された部分をグローバルビューの実際のものと類似させる。
第2に, 合成した部分からスケッチを逆向きに生成し, 接地した部分との整合性を奨励する。
論文 参考訳(メタデータ) (2020-06-17T11:34:36Z) - Reference-Based Sketch Image Colorization using Augmented-Self Reference
and Dense Semantic Correspondence [32.848390767305276]
本稿では,すでに色のついた参照画像が与えられたスケッチ画像の自動着色作業に取り組む。
仮想参照として幾何学的歪みを持つ同一画像を有効利用することにより、色付き出力画像の基底真理を確保できる。
論文 参考訳(メタデータ) (2020-05-11T15:52:50Z) - SketchyCOCO: Image Generation from Freehand Scene Sketches [71.85577739612579]
本稿では,シーンレベルのフリーハンドスケッチから画像の自動生成手法を提案する。
主要なコントリビューションは、EdgeGANと呼ばれる属性ベクトルをブリッジしたGeneversarative Adrial Networkである。
我々はSketchyCOCOと呼ばれる大規模複合データセットを構築し、ソリューションをサポートし評価した。
論文 参考訳(メタデータ) (2020-03-05T14:54:10Z) - Deep Self-Supervised Representation Learning for Free-Hand Sketch [51.101565480583304]
フリーハンドスケッチにおける自己指導型表現学習の課題に対処する。
自己教師型学習パラダイムの成功の鍵は、スケッチ固有の設計にある。
提案手法は最先端の教師なし表現学習法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-02-03T16:28:29Z) - Deep Plastic Surgery: Robust and Controllable Image Editing with
Human-Drawn Sketches [133.01690754567252]
スケッチベースの画像編集は、人間の描いたスケッチによって提供される構造情報に基づいて、写真を合成し、修正することを目的としている。
Deep Plastic Surgeryは、手書きのスケッチ入力を使って画像のインタラクティブな編集を可能にする、新しくて堅牢で制御可能な画像編集フレームワークである。
論文 参考訳(メタデータ) (2020-01-09T08:57:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。