論文の概要: Semi-supervised reference-based sketch extraction using a contrastive learning framework
- arxiv url: http://arxiv.org/abs/2407.14026v1
- Date: Fri, 19 Jul 2024 04:51:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 18:53:17.646840
- Title: Semi-supervised reference-based sketch extraction using a contrastive learning framework
- Title(参考訳): コントラスト学習フレームワークを用いた半教師付き参照ベーススケッチ抽出
- Authors: Chang Wook Seo, Amirsaman Ashtari, Junyong Noh,
- Abstract要約: 本研究では,対象とする参照スケッチのスタイルを非ペアデータトレーニングで模倣できる,新しいマルチモーダルスケッチ抽出手法を提案する。
提案手法は,定量評価と定性評価の両面において,最先端のスケッチ抽出法と未完成画像翻訳法より優れる。
- 参考スコア(独自算出の注目度): 6.20476217797034
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sketches reflect the drawing style of individual artists; therefore, it is important to consider their unique styles when extracting sketches from color images for various applications. Unfortunately, most existing sketch extraction methods are designed to extract sketches of a single style. Although there have been some attempts to generate various style sketches, the methods generally suffer from two limitations: low quality results and difficulty in training the model due to the requirement of a paired dataset. In this paper, we propose a novel multi-modal sketch extraction method that can imitate the style of a given reference sketch with unpaired data training in a semi-supervised manner. Our method outperforms state-of-the-art sketch extraction methods and unpaired image translation methods in both quantitative and qualitative evaluations.
- Abstract(参考訳): スケッチは個々のアーティストの描画様式を反映しているため、様々な用途にカラー画像からスケッチを抽出する際の独自のスタイルを考えることが重要である。
残念ながら、既存のスケッチ抽出手法のほとんどは、単一のスタイルのスケッチを抽出するために設計されている。
様々なスタイルのスケッチを生成する試みはいくつかあったが、一般的には、低品質の結果とペアデータセットの要求によるモデルのトレーニングの難しさという2つの制限に悩まされている。
本稿では,与えられた参照スケッチのスタイルを,半教師なしデータトレーニングで模倣できる,新しいマルチモーダルスケッチ抽出手法を提案する。
提案手法は,定量評価と定性評価の両面において,最先端のスケッチ抽出法と未完成画像翻訳法より優れる。
関連論文リスト
- Stylized Face Sketch Extraction via Generative Prior with Limited Data [6.727433982111717]
StyleSketchは、顔画像から高解像度のスタイリングスケッチを抽出する方法である。
事前訓練されたStyleGANの深い特徴の豊富なセマンティクスを用いて、16対の顔とそれに対応するスケッチイメージでスケッチジェネレータを訓練することができる。
論文 参考訳(メタデータ) (2024-03-17T16:25:25Z) - How to Handle Sketch-Abstraction in Sketch-Based Image Retrieval? [120.49126407479717]
スケッチの抽象化を様々なレベルで処理できるスケッチベース画像検索フレームワークを提案する。
粒度レベルの抽象理解のために、検索モデルはすべての抽象レベルを等しく扱ってはならないと規定する。
私たちのAcc.@qの損失は、評価がいかに厳格であるかという点で、スケッチが焦点を絞りたり壊したりできます。
論文 参考訳(メタデータ) (2024-03-11T23:08:29Z) - Representative Feature Extraction During Diffusion Process for Sketch
Extraction with One Example [6.520083224801834]
DiffSketchは、画像から様々なスタイル化されたスケッチを生成する方法である。
提案手法は,事前学習した拡散モデル内での深部特徴の豊かな意味論から代表的特徴を選択することに焦点を当てる。
論文 参考訳(メタデータ) (2024-01-09T05:22:15Z) - DiffSketching: Sketch Control Image Synthesis with Diffusion Models [10.172753521953386]
スケッチ・ツー・イメージ合成のためのディープラーニングモデルは、視覚的な詳細なしに歪んだ入力スケッチを克服する必要がある。
我々のモデルは、クロスドメイン制約を通じてスケッチにマッチし、画像合成をより正確に導くために分類器を使用する。
我々のモデルは、生成品質と人的評価の点でGANベースの手法に勝ることができ、大規模なスケッチ画像データセットに依存しない。
論文 参考訳(メタデータ) (2023-05-30T07:59:23Z) - I Know What You Draw: Learning Grasp Detection Conditioned on a Few
Freehand Sketches [74.63313641583602]
そこで本研究では,スケッチ画像に関連のある潜在的な把握構成を生成する手法を提案する。
私たちのモデルは、現実世界のアプリケーションで簡単に実装できるエンドツーエンドで訓練され、テストされています。
論文 参考訳(メタデータ) (2022-05-09T04:23:36Z) - XCI-Sketch: Extraction of Color Information from Images for Generation
of Colored Outlines and Sketches [0.0]
そこで本研究では,彩色スケッチを模倣する2つの手法を提案する。
第1の方法は、k平均色クラスタリングによる画像処理技術を適用することで、カラーアウトラインスケッチを描画する。
第2の方法は、生成逆数ネットワークを用いて、以前は観測されていなかった画像から色付きスケッチを生成できるモデルを開発する。
論文 参考訳(メタデータ) (2021-08-26T02:27:55Z) - On Learning Semantic Representations for Million-Scale Free-Hand
Sketches [146.52892067335128]
百万のフリーハンドスケッチのための学習意味表現について研究する。
スケッチを表現するために,デュアルブランチCNNRNNネットワークアーキテクチャを提案する。
ハッシュ検索とゼロショット認識におけるスケッチ指向の意味表現の学習について検討する。
論文 参考訳(メタデータ) (2020-07-07T15:23:22Z) - Deep Self-Supervised Representation Learning for Free-Hand Sketch [51.101565480583304]
フリーハンドスケッチにおける自己指導型表現学習の課題に対処する。
自己教師型学習パラダイムの成功の鍵は、スケッチ固有の設計にある。
提案手法は最先端の教師なし表現学習法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-02-03T16:28:29Z) - SketchDesc: Learning Local Sketch Descriptors for Multi-view
Correspondence [68.63311821718416]
我々はマルチビュースケッチ対応の問題について検討し、同じオブジェクトの異なるビューを持つ複数のフリーハンドスケッチを入力として扱う。
異なる視点における対応する点の視覚的特徴は、非常に異なる可能性があるため、この問題は困難である。
我々は、深層学習アプローチを採用し、データから新しいローカルスケッチ記述子を学習する。
論文 参考訳(メタデータ) (2020-01-16T11:31:21Z) - Deep Plastic Surgery: Robust and Controllable Image Editing with
Human-Drawn Sketches [133.01690754567252]
スケッチベースの画像編集は、人間の描いたスケッチによって提供される構造情報に基づいて、写真を合成し、修正することを目的としている。
Deep Plastic Surgeryは、手書きのスケッチ入力を使って画像のインタラクティブな編集を可能にする、新しくて堅牢で制御可能な画像編集フレームワークである。
論文 参考訳(メタデータ) (2020-01-09T08:57:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。