論文の概要: AI at work -- Mitigating safety and discriminatory risk with technical
standards
- arxiv url: http://arxiv.org/abs/2108.11844v1
- Date: Thu, 26 Aug 2021 15:13:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-27 17:38:50.236636
- Title: AI at work -- Mitigating safety and discriminatory risk with technical
standards
- Title(参考訳): ai at work -- 技術的標準による安全性と差別リスクの軽減
- Authors: Nikolas Becker, Pauline Junginger, Lukas Martinez, Daniel Krupka,
Leonie Beining
- Abstract要約: 本稿は、既存の国際標準、ヨーロッパ標準、ドイツ標準の概要と評価を提供する。
この論文は、研究プロジェクト「ExamAI - Testing and Auditing of AI systems」の一部である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The use of artificial intelligence (AI) and AI methods in the workplace holds
both great opportunities as well as risks to occupational safety and
discrimination. In addition to legal regulation, technical standards will play
a key role in mitigating such risk by defining technical requirements for
development and testing of AI systems. This paper provides an overview and
assessment of existing international, European and German standards as well as
those currently under development. The paper is part of the research project
"ExamAI - Testing and Auditing of AI systems" and focusses on the use of AI in
an industrial production environment as well as in the realm of human resource
management (HR).
- Abstract(参考訳): 職場における人工知能(AI)とAIの手法の使用は、仕事の安全と差別のリスクだけでなく、大きな機会を秘めている。
法的規制に加えて、AIシステムの開発とテストの技術的要件を定義することによって、そのようなリスクを軽減する上で、技術標準が重要な役割を果たす。
本稿では,既存の国際標準,ヨーロッパ標準,ドイツ標準および現在開発中の標準の概要と評価について述べる。
この論文は、研究プロジェクト「ExamAI - Testing and Auditing of AI systems」の一部であり、産業生産環境や人的資源管理(HR)分野におけるAIの利用に焦点を当てている。
関連論文リスト
- Risk Sources and Risk Management Measures in Support of Standards for General-Purpose AI Systems [2.3266896180922187]
我々は、汎用AIシステムのためのリスクソースとリスク管理対策の広範なカタログをコンパイルする。
この作業には、モデル開発、トレーニング、デプロイメントステージにわたる技術的、運用的、社会的リスクの特定が含まれる。
このカタログは、AIガバナンスと標準における利害関係者による直接的な使用を容易にするために、パブリックドメインライセンス下でリリースされている。
論文 参考訳(メタデータ) (2024-10-30T21:32:56Z) - Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
信頼できるAIのための重要な要件は、経験的リスク最小化のコンポーネントの設計選択に変換できる。
私たちは、AIの信頼性の新たな標準を満たすAIシステムを構築するための実用的なガイダンスを提供したいと思っています。
論文 参考訳(メタデータ) (2024-10-25T07:53:32Z) - Open Problems in Technical AI Governance [93.89102632003996]
テクニカルAIガバナンス(Technical AI Governance)は、AIの効果的なガバナンスを支援するための技術分析とツールである。
本論文は、AIガバナンスへの貢献を目指す技術研究者や研究資金提供者のためのリソースとして意図されている。
論文 参考訳(メタデータ) (2024-07-20T21:13:56Z) - The Necessity of AI Audit Standards Boards [0.0]
我々は、監査基準の作成は不十分であるだけでなく、無害で一貫性のない基準を広めることによって積極的に有害であると主張している。
代わりに、監査方法と標準を開発・更新する責任を持つAI監査基準委員会(AI Audit Standards Board)の設立を提案する。
論文 参考訳(メタデータ) (2024-04-11T15:08:24Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - No Trust without regulation! [0.0]
機械学習(ML)の性能の爆発と、その応用の可能性は、産業システムにおけるその利用を考慮し続けています。
安全と、その基準、規制、標準の問題については、いまだに片側に過度に残っています。
欧州委員会は、安全で信頼性があり、ヨーロッパの倫理的価値を尊重するAIベースのアプリケーションを統合するための、前進と強固なアプローチを構築するための基盤を築き上げた。
論文 参考訳(メタデータ) (2023-09-27T09:08:41Z) - Trustworthy, responsible, ethical AI in manufacturing and supply chains:
synthesis and emerging research questions [59.34177693293227]
製造の文脈において、責任、倫理、信頼できるAIの適用性について検討する。
次に、機械学習ライフサイクルのより広範な適応を使用して、実証的な例を用いて、各ステップが与えられたAIの信頼性に関する懸念にどのように影響するかを議論します。
論文 参考訳(メタデータ) (2023-05-19T10:43:06Z) - Legal Provocations for HCI in the Design and Development of Trustworthy
Autonomous Systems [2.575172714412997]
我々は、2021年欧州連合AI法(AIA)からの一連の法的挑発について検討する。
AIAは、ハイリスクAIシステム(HRAIS)の必須設計と開発要件を導入し、社会と市民の基本的権利にリスクをもたらすAI開発をターゲットにしている。
これらの要件は、AIの倫理と説明可能性に関する確立した懸念を越えて、AIに対する規制の遵守と社会的信頼の促進を可能にする、人間中心のプロセスと設計方法におけるAI開発を確固たるものにするHCIの新たな機会を開く。
論文 参考訳(メタデータ) (2022-06-15T13:03:43Z) - Beyond Fairness Metrics: Roadblocks and Challenges for Ethical AI in
Practice [2.1485350418225244]
我々は,現代産業・社会利用の規模で倫理的AIを構築し,展開する上での実践的課題を概観する。
我々は、倫理的AIを実際に構築するには、AIシステムの開発と展開における倫理の全体的考慮が必要であると論じる。
論文 参考訳(メタデータ) (2021-08-11T18:33:17Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI開発者は、責任を負うことのできる検証可能な主張をする必要がある。
このレポートは、さまざまな利害関係者がAIシステムに関するクレームの妥当性を改善するための様々なステップを示唆している。
我々は、この目的のための10のメカニズム、すなわち、組織、ソフトウェア、ハードウェアを分析し、それらのメカニズムの実装、探索、改善を目的とした推奨を行う。
論文 参考訳(メタデータ) (2020-04-15T17:15:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。