論文の概要: Latent Tree Decomposition Parsers for AMR-to-Text Generation
- arxiv url: http://arxiv.org/abs/2108.12304v1
- Date: Fri, 27 Aug 2021 14:30:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-30 14:18:01.905613
- Title: Latent Tree Decomposition Parsers for AMR-to-Text Generation
- Title(参考訳): AMR-テキスト生成用潜木分解パーサ
- Authors: Lisa Jin, Daniel Gildea
- Abstract要約: エッジを階層にクラスタリングすることで、ツリー分解はグラフ構造を要約する。
我々のモデルは木分解の森を符号化し、期待された木を抽出する。
分子特性予測のための畳み込み基底線を1.92%のROC-AUCで上回る。
- 参考スコア(独自算出の注目度): 12.342043849587613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph encoders in AMR-to-text generation models often rely on neighborhood
convolutions or global vertex attention. While these approaches apply to
general graphs, AMRs may be amenable to encoders that target their tree-like
structure. By clustering edges into a hierarchy, a tree decomposition
summarizes graph structure. Our model encodes a derivation forest of tree
decompositions and extracts an expected tree. From tree node embeddings, it
builds graph edge features used in vertex attention of the graph encoder.
Encoding TD forests instead of shortest-pairwise paths in a self-attentive
baseline raises BLEU by 0.7 and chrF++ by 0.3. The forest encoder also
surpasses a convolutional baseline for molecular property prediction by 1.92%
ROC-AUC.
- Abstract(参考訳): AMR-to-text生成モデルのグラフエンコーダは、しばしば近所の畳み込みやグローバルな頂点の注意に依存する。
これらのアプローチは一般的なグラフに適用されるが、AMRは木のような構造をターゲットとするエンコーダに従うことができる。
エッジを階層にクラスタリングすることで、ツリー分解はグラフ構造を要約する。
本モデルは,木分解の導出森林を符号化し,期待木を抽出する。
ツリーノードの埋め込みから、グラフエンコーダの頂点注意で使用されるグラフエッジ機能を構築する。
自己注意ベースラインにおける最短経路の代わりにTD林を符号化するとBLEUが0.7、chrF++が0.3上昇する。
森林エンコーダは分子特性予測のための畳み込みベースラインを1.92% ROC-AUC で上回る。
関連論文リスト
- Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
本稿では,属性付きグラフデータに対する新しいDeep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE)を提案する。
提案手法は,最先端のベースラインアルゴリズムを,一般的なデータセット間でのダウンストリームタスクの差を大きく越える。
論文 参考訳(メタデータ) (2024-01-12T17:57:07Z) - TreeFormer: a Semi-Supervised Transformer-based Framework for Tree
Counting from a Single High Resolution Image [6.789370732159176]
単一空中・衛星画像を用いた木密度推定と推定は,光度測定とリモートセンシングにおいて難しい課題である。
リモートセンシング画像に対する高価なツリーアノテーションを低減させる,ツリーカウントのための最初の半教師付きトランスフォーマーベースのフレームワークを提案する。
我々のモデルは、JiosuとYosemiteという2つのベンチマークツリーカウントデータセットと、彼ら自身が作成した新しいデータセットKCL-Londonで評価された。
論文 参考訳(メタデータ) (2023-07-12T12:19:36Z) - Graph Generation with $K^2$-trees [13.281380233427287]
K2$-tree表現を利用した新しいグラフ生成手法を提案する。
また、プルーニング、フラットニング、トークン化プロセスを組み込んだシーケンシャルな$K2$-treerepresentationを提示する。
グラフ生成の優位性を確認するため,本アルゴリズムを4つの一般および2つの分子グラフデータセット上で広範囲に評価した。
論文 参考訳(メタデータ) (2023-05-30T15:36:37Z) - Hierarchical clustering with dot products recovers hidden tree structure [53.68551192799585]
本稿では,階層構造の回復に着目した凝集クラスタリングアルゴリズムの新しい視点を提案する。
クラスタを最大平均点積でマージし、例えば最小距離やクラスタ内分散でマージしないような、標準的なアルゴリズムの単純な変種を推奨する。
このアルゴリズムにより得られた木は、汎用確率的グラフィカルモデルの下で、データ中の生成的階層構造をボナフェイド推定することを示した。
論文 参考訳(メタデータ) (2023-05-24T11:05:12Z) - MGAE: Masked Autoencoders for Self-Supervised Learning on Graphs [55.66953093401889]
Masked Graph Autoencoder (MGAE) フレームワークは、グラフ構造データの効果的な学習を行う。
自己指導型学習から洞察を得て、私たちはランダムに大量のエッジを隠蔽し、トレーニング中に欠落したエッジを再構築しようとします。
論文 参考訳(メタデータ) (2022-01-07T16:48:07Z) - Tree Decomposition Attention for AMR-to-Text Generation [12.342043849587613]
グラフ内の自己注意を制限するために、グラフのツリー分解を使用します。
動的プログラミングを用いて木分解の森を導出し、AMRと最も構造的に類似した木を選択する。
我々のシステムは1.6BLEUと1.8chrF++の自励ベースラインを上回ります。
論文 参考訳(メタデータ) (2021-08-27T14:24:25Z) - TD-GEN: Graph Generation With Tree Decomposition [31.751200416677225]
TD-GENは木分解に基づくグラフ生成フレームワークである。
ツリーノードはスーパーノードであり、それぞれがグラフ内のノードのクラスタを表す。
論文 参考訳(メタデータ) (2021-06-20T08:57:43Z) - Neural Trees for Learning on Graphs [19.05038106825347]
グラフニューラルネットワーク(GNN)は、グラフを学習するための柔軟で強力なアプローチとして登場した。
我々はニューラルツリーという新しいGNNアーキテクチャを提案する。
神経木アーキテクチャは無向グラフ上の任意の滑らかな確率分布関数を近似できることを示す。
論文 参考訳(メタデータ) (2021-05-15T17:08:20Z) - Visualizing hierarchies in scRNA-seq data using a density tree-biased
autoencoder [50.591267188664666]
本研究では,高次元scRNA-seqデータから意味のある木構造を同定する手法を提案する。
次に、低次元空間におけるデータのツリー構造を強調する木バイアスオートエンコーダDTAEを紹介する。
論文 参考訳(メタデータ) (2021-02-11T08:48:48Z) - SGA: A Robust Algorithm for Partial Recovery of Tree-Structured
Graphical Models with Noisy Samples [75.32013242448151]
ノードからの観測が独立しているが非識別的に分散ノイズによって破損した場合、Ising Treeモデルの学習を検討する。
Katiyarら。
(2020) は, 正確な木構造は復元できないが, 部分木構造を復元できることを示した。
統計的に堅牢な部分木回復アルゴリズムであるSymmetrized Geometric Averaging(SGA)を提案する。
論文 参考訳(メタデータ) (2021-01-22T01:57:35Z) - Uncovering the Folding Landscape of RNA Secondary Structure with Deep
Graph Embeddings [71.20283285671461]
このようなグラフ埋め込みを学習するための幾何散乱オートエンコーダ(GSAE)ネットワークを提案する。
我々の埋め込みネットワークは、最近提案された幾何散乱変換を用いて、まずリッチグラフ特徴を抽出する。
GSAEは、構造とエネルギーの両方でRNAグラフを整理し、ビスタブルRNA構造を正確に反映していることを示す。
論文 参考訳(メタデータ) (2020-06-12T00:17:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。