論文の概要: Interpretable Propaganda Detection in News Articles
- arxiv url: http://arxiv.org/abs/2108.12802v1
- Date: Sun, 29 Aug 2021 09:57:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-31 15:06:19.143809
- Title: Interpretable Propaganda Detection in News Articles
- Title(参考訳): ニュース記事における解釈可能なプロパガンダ検出
- Authors: Seunghak Yu, Giovanni Da San Martino, Mitra Mohtarami, James Glass,
Preslav Nakov
- Abstract要約: 本稿では, 解釈可能性を提供する手段として, 偽造手法を検知し, 利用することを提案する。
我々の解釈可能な特徴は、事前訓練された言語モデルと簡単に組み合わせられ、最先端の結果が得られる。
- 参考スコア(独自算出の注目度): 30.192497301608164
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Online users today are exposed to misleading and propagandistic news articles
and media posts on a daily basis. To counter thus, a number of approaches have
been designed aiming to achieve a healthier and safer online news and media
consumption. Automatic systems are able to support humans in detecting such
content; yet, a major impediment to their broad adoption is that besides being
accurate, the decisions of such systems need also to be interpretable in order
to be trusted and widely adopted by users. Since misleading and propagandistic
content influences readers through the use of a number of deception techniques,
we propose to detect and to show the use of such techniques as a way to offer
interpretability. In particular, we define qualitatively descriptive features
and we analyze their suitability for detecting deception techniques. We further
show that our interpretable features can be easily combined with pre-trained
language models, yielding state-of-the-art results.
- Abstract(参考訳): オンラインユーザーは毎日、誤解を招き、宣伝的なニュース記事やメディア投稿に晒されている。
これに対抗するために、より健全で安全なオンラインニュースやメディア消費を実現するために、多くのアプローチが設計されている。
自動システムは、人間がそのようなコンテンツを検出するのをサポートすることができるが、その広範な採用の大きな障害は、正確であることに加えて、ユーザーが信頼し広く採用するためには、そのシステムの決定も解釈可能である必要があることである。
誤解を招き,プロパガンダ的な内容が読者に影響を与えるため,解釈可能性を提供する手段として,このような手法を検知し,示すことを提案する。
特に,定性的記述的特徴を定式化し,その誤認検出の適性を分析した。
さらに,理解可能な機能を事前学習した言語モデルと組み合わせることで,最先端の成果が得られることを示す。
関連論文リスト
- Decoding Diffusion: A Scalable Framework for Unsupervised Analysis of Latent Space Biases and Representations Using Natural Language Prompts [68.48103545146127]
本稿では拡散潜在空間の教師なし探索のための新しい枠組みを提案する。
我々は、自然言語のプロンプトと画像キャプションを直接利用して、遅延方向をマップする。
本手法は,拡散モデルに符号化された意味的知識をよりスケーラブルで解釈可能な理解を提供する。
論文 参考訳(メタデータ) (2024-10-25T21:44:51Z) - Exposing and Explaining Fake News On-the-Fly [4.278181795494584]
この研究は、偽ニュースをリアルタイムで認識するための説明可能なオンライン分類手法に寄与する。
提案手法は、教師なしおよび教師なしの機械学習アプローチとオンライン生成レキシカを組み合わせたものである。
提案手法の性能はTwitterの実際のデータセットで検証され,その結果は80%精度とマクロF測定値を得た。
論文 参考訳(メタデータ) (2024-05-03T14:49:04Z) - ClaimVer: Explainable Claim-Level Verification and Evidence Attribution of Text Through Knowledge Graphs [13.608282497568108]
ClaimVerは、ユーザの情報と検証のニーズを満たすように設計された、人間中心のフレームワークである。
各クレームをハイライトし、信頼された知識グラフに対して検証し、クレームの予測に対して簡潔で明確な説明を提供する。
論文 参考訳(メタデータ) (2024-03-12T17:07:53Z) - Prompt-and-Align: Prompt-Based Social Alignment for Few-Shot Fake News
Detection [50.07850264495737]
プロンプト・アンド・アライン(Prompt-and-Align、P&A)は、数発のフェイクニュース検出のための新しいプロンプトベースのパラダイムである。
我々はP&Aが、数発のフェイクニュース検出性能をかなりのマージンで新たな最先端に設定していることを示す。
論文 参考訳(メタデータ) (2023-09-28T13:19:43Z) - Adversarial Attacks on the Interpretation of Neuron Activation
Maximization [70.5472799454224]
アクティベーション最大化アプローチは、訓練されたディープラーニングモデルの解釈と解析に使用される。
本研究では,解釈を欺くためにモデルを操作する敵の概念を考察する。
論文 参考訳(メタデータ) (2023-06-12T19:54:33Z) - Cognitive Semantic Communication Systems Driven by Knowledge Graph:
Principle, Implementation, and Performance Evaluation [74.38561925376996]
単一ユーザと複数ユーザのコミュニケーションシナリオに対して,認知意味コミュニケーションフレームワークが2つ提案されている。
知識グラフから推論規則をマイニングすることにより,効果的な意味補正アルゴリズムを提案する。
マルチユーザ認知型セマンティックコミュニケーションシステムにおいて,異なるユーザのメッセージを識別するために,メッセージ復元アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-03-15T12:01:43Z) - Interpretable Fake News Detection with Topic and Deep Variational Models [2.15242029196761]
我々は,解釈可能な特徴と手法を用いた偽ニュース検出に焦点をあてる。
我々は,テキストニュースの高密度表現を統合した深層確率モデルを開発した。
我々のモデルは最先端の競合モデルに匹敵する性能を達成する。
論文 参考訳(メタデータ) (2022-09-04T05:31:00Z) - Like Article, Like Audience: Enforcing Multimodal Correlations for
Disinformation Detection [20.394457328537975]
ユーザ生成コンテンツとユーザ共有コンテンツの相関を利用して、オンラインニュース記事の偽情報を検出する。
偽情報検出のためのマルチモーダル学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-08-31T14:50:16Z) - Technological Approaches to Detecting Online Disinformation and
Manipulation [0.0]
プロパガンダや偽情報をオンライン環境に移すことは、過去10年間にデジタル情報チャンネルがニュースソースとして急速に普及したという事実により可能である。
本章では, 計算機支援による偽情報検出手法の概要について述べる。
論文 参考訳(メタデータ) (2021-08-26T09:28:50Z) - Detecting Cross-Modal Inconsistency to Defend Against Neural Fake News [57.9843300852526]
我々は、画像やキャプションを含む機械生成ニュースに対して、より現実的で挑戦的な対策を導入する。
敵が悪用できる可能性のある弱点を特定するために、4つの異なる種類の生成された記事からなるNeuralNewsデータセットを作成します。
ユーザ実験から得られた貴重な知見に加えて,視覚的意味的不整合の検出にもとづく比較的効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-16T14:13:15Z) - Machine Learning Explanations to Prevent Overtrust in Fake News
Detection [64.46876057393703]
本研究では、ニュースレビュープラットフォームに組み込んだ説明可能なAIアシスタントが、フェイクニュースの拡散と戦う効果について検討する。
我々は、ニュースレビューと共有インターフェースを設計し、ニュース記事のデータセットを作成し、4つの解釈可能なフェイクニュース検出アルゴリズムを訓練する。
説明可能なAIシステムについてより深く理解するために、説明プロセスにおけるユーザエンゲージメント、メンタルモデル、信頼、パフォーマンス対策の相互作用について議論する。
論文 参考訳(メタデータ) (2020-07-24T05:42:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。