論文の概要: Normalizing Field Flows: Solving forward and inverse stochastic
differential equations using Physics-Informed flow model
- arxiv url: http://arxiv.org/abs/2108.12956v1
- Date: Mon, 30 Aug 2021 01:58:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-31 14:16:13.773300
- Title: Normalizing Field Flows: Solving forward and inverse stochastic
differential equations using Physics-Informed flow model
- Title(参考訳): 正規化場流:物理インフォームドフローモデルを用いた前方および逆確率微分方程式の解法
- Authors: Ling Guo, Hao Wu, Tao Zhou
- Abstract要約: 本研究では,散乱測定からランダム場を学習する場流の正規化(NFF)について紹介する。
我々は、非ガウス過程、混合ガウス過程、前方および逆偏微分方程式を学習するためのNFFモデルの有効性を実証する。
- 参考スコア(独自算出の注目度): 8.455584500599807
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce in this work the normalizing field flows (NFF) for learning
random fields from scattered measurements. More precisely, we construct a
bijective transformation (a normalizing flow characterizing by neural networks)
between a reference random field (say, a Gaussian random field with the
Karhunen-Lo\`eve expansion structure) and the target stochastic field, where
the KL expansion coefficients and the invertible networks are trained by
maximizing the sum of the log-likelihood on scattered measurements. This NFF
model can be used to solve data-driven forward, inverse, and mixed
forward/inverse stochastic partial differential equations in a unified
framework. We demonstrate the capability of the proposed NFF model for learning
Non Gaussian processes, mixed Gaussian processes, and forward & inverse
stochastic partial differential equations.
- Abstract(参考訳): 本研究では,散乱測定からランダム場を学習する場流の正規化(NFF)について紹介する。
より正確には、基準確率場(例えばカルフネン=ロ=エベ展開構造を持つガウス確率場)と目標確率場の間の単射変換(ニューラルネットワークによって特徴づけられる正規化フロー)を構築し、kl展開係数と可逆ネットワークを散乱測定値の対数類似度の総和を最大化することにより訓練する。
この nff モデルは、一元的な枠組みでデータ駆動前方・逆・混合確率偏微分方程式を解くのに使うことができる。
我々は、非ガウス過程、混合ガウス過程、前方および逆確率偏微分方程式を学習するためのNFFモデルの有効性を実証する。
関連論文リスト
- Understanding Diffusion Models by Feynman's Path Integral [2.4373900721120285]
ファインマン積分経路を用いた拡散モデルの新しい定式化を導入する。
この定式化はスコアベース生成モデルの包括的記述を提供する。
また、後方微分方程式と損失関数の導出を示す。
論文 参考訳(メタデータ) (2024-03-17T16:24:29Z) - Data-driven Modeling and Inference for Bayesian Gaussian Process ODEs
via Double Normalizing Flows [28.62579476863723]
本稿では,ODEベクトル場を再パラメータ化するために正規化フローを導入し,データ駆動の事前分布を導出する。
また, GP ODE の後部推定に正規化フローを適用し, 強平均場仮定の問題を解く。
シミュレーション力学系と実世界の人間の動作データに対するアプローチの有効性を検証した。
論文 参考訳(メタデータ) (2023-09-17T09:28:47Z) - A probabilistic, data-driven closure model for RANS simulations with aleatoric, model uncertainty [1.8416014644193066]
本稿では,レノルズ平均Navier-Stokes (RANS) シミュレーションのためのデータ駆動閉包モデルを提案する。
パラメトリック閉包が不十分な問題領域内の領域を特定するために,完全ベイズ的定式化と余剰誘導先行法を組み合わせて提案する。
論文 参考訳(メタデータ) (2023-07-05T16:53:31Z) - Mean-field Variational Inference via Wasserstein Gradient Flow [8.05603983337769]
平均場(MF)近似のような変分推論は、効率的な計算のためにある種の共役構造を必要とする。
We introduced a general computer framework to implement MFal inference for Bayesian model with or without latent variables, using the Wasserstein gradient flow (WGF)。
本稿では,ニューラルネットワークを用いた制約のない関数近似手法を提案する。
論文 参考訳(メタデータ) (2022-07-17T04:05:32Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - Moser Flow: Divergence-based Generative Modeling on Manifolds [49.04974733536027]
Moser Flow (MF) は連続正規化フロー(CNF)ファミリーにおける新しい生成モデルのクラスである
MFは、訓練中にODEソルバを介して呼び出しやバックプロパゲートを必要としない。
一般曲面からのサンプリングにおけるフローモデルの利用を初めて実演する。
論文 参考訳(メタデータ) (2021-08-18T09:00:24Z) - E(n) Equivariant Normalizing Flows for Molecule Generation in 3D [87.12477361140716]
本稿ではユークリッド対称性に同値な生成モデルを紹介する: E(n) 等変正規化フロー(E-NFs)
私たちの知る限りでは、これは3Dで分子を生成する可能性に基づく最初の深層生成モデルである。
論文 参考訳(メタデータ) (2021-05-19T09:28:54Z) - Gaussianization Flows [113.79542218282282]
そこで本研究では,サンプル生成における効率のよい繰り返しと効率のよい逆変換を両立できる新しい型正規化フローモデルを提案する。
この保証された表現性のため、サンプル生成の効率を損なうことなく、マルチモーダルなターゲット分布をキャプチャできる。
論文 参考訳(メタデータ) (2020-03-04T08:15:06Z) - Stochastic Normalizing Flows [52.92110730286403]
微分方程式(SDE)を用いた最大推定と変分推論のための正規化フロー(VI)を導入する。
粗い経路の理論を用いて、基礎となるブラウン運動は潜在変数として扱われ、近似され、神経SDEの効率的な訓練を可能にする。
これらのSDEは、与えられたデータセットの基盤となる分布からサンプリングする効率的なチェーンを構築するために使用することができる。
論文 参考訳(メタデータ) (2020-02-21T20:47:55Z) - Learning Likelihoods with Conditional Normalizing Flows [54.60456010771409]
条件正規化フロー(CNF)はサンプリングと推論において効率的である。
出力空間写像に対する基底密度が入力 x 上で条件づけられた CNF について、条件密度 p(y|x) をモデル化する。
論文 参考訳(メタデータ) (2019-11-29T19:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。