論文の概要: Functional Nanomaterials Design in the Workflow of Building
Machine-Learning Models
- arxiv url: http://arxiv.org/abs/2108.13171v1
- Date: Mon, 16 Aug 2021 05:51:03 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-05 08:51:27.364267
- Title: Functional Nanomaterials Design in the Workflow of Building
Machine-Learning Models
- Title(参考訳): 機械学習モデル構築のワークフローにおける機能ナノマテリアル設計
- Authors: Zhexu Xi
- Abstract要約: 機械学習(ML)技術は、化学と材料科学の多くの研究分野に革命をもたらした。
MLは、分子/物質の組み合わせに関するより包括的な洞察を提供する。
ナノマテリアル発見の進歩の鍵は、入力指紋と出力値を定量的にリンクする方法である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine-learning (ML) techniques have revolutionized a host of research
fields of chemical and materials science with accelerated, high-efficiency
discoveries in design, synthesis, manufacturing, characterization and
application of novel functional materials, especially at the nanometre scale.
The reason is the time efficiency, prediction accuracy and good generalization
abilities, which gradually replaces the traditional experimental or
computational work. With enormous potentiality to tackle more real-world
problems, ML provides a more comprehensive insight into combinations with
molecules/materials under the fundamental procedures for constructing ML
models, like predicting properties or functionalities from given parameters,
nanoarchitecture design and generating specific models for other purposes. The
key to the advances in nanomaterials discovery is how input fingerprints and
output values can be linked quantitatively. Finally, some great opportunities
and technical challenges are concluded in this fantastic field.
- Abstract(参考訳): 機械学習(ml)技術は、新しい機能性材料の設計、合成、製造、キャラクタリゼーション、応用、特にナノメートルスケールでの高速かつ高効率な発見によって、化学および材料科学の多くの分野に革命をもたらした。
理由は時間効率、予測精度、そして優れた一般化能力が、徐々に従来の実験や計算の作業に取って代わるからである。
mlは、与えられたパラメータからの性質や機能を予測すること、ナノアーキテクチャの設計、その他の目的のために特定のモデルを生成することなど、mlモデルを構築するための基本的な手順の下で、分子/材料の組み合わせに関するより包括的な洞察を提供する。
ナノマテリアル発見の進歩の鍵は、入力指紋と出力値を定量的にリンクする方法である。
最後に、この素晴らしい分野において、いくつかの素晴らしい機会と技術的な課題が解決されます。
関連論文リスト
- AtomAgents: Alloy design and discovery through physics-aware multi-modal multi-agent artificial intelligence [0.0]
提案されている物理対応生成AIプラットフォームAtomAgentsは、大規模言語モデル(LLM)のインテリジェンスをシナジする
以上の結果から, 合金間におけるキー特性の正確な予測が可能となり, 先進金属合金の開発を推し進めるためには, 固溶合金が重要な役割を担っていることが明らかとなった。
論文 参考訳(メタデータ) (2024-07-13T22:46:02Z) - Improving Molecular Modeling with Geometric GNNs: an Empirical Study [56.52346265722167]
本稿では,異なる標準化手法,(2)グラフ作成戦略,(3)補助的なタスクが性能,拡張性,対称性の強制に与える影響に焦点をあてる。
本研究の目的は,分子モデリングタスクに最適なモデリングコンポーネントの選択を研究者に案内することである。
論文 参考訳(メタデータ) (2024-07-11T09:04:12Z) - Unveiling the Potential of AI for Nanomaterial Morphology Prediction [0.0]
本研究は、データ可用性制約におけるナノ粒子の形態を予測するAIの可能性について検討する。
我々はまず,類似研究の2倍の大きさのマルチモーダルデータセットを作成した。
論文 参考訳(メタデータ) (2024-05-31T19:16:07Z) - Mechanical Characterization and Inverse Design of Stochastic Architected
Metamaterials Using Neural Operators [2.4918888803900727]
機械学習は、建築された材料の設計のための変革的なツールとして登場しつつある。
ここでは、ディープニューラル演算子(DeepONet)を活用した、エンドツーエンドの科学MLフレームワークを紹介する。
2光子リソグラフィーを用いて印刷した脊椎の微細構造から得られた結果,機械的応答の予測誤差が5~10%の範囲内であることが判明した。
論文 参考訳(メタデータ) (2023-11-23T05:23:15Z) - QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules [69.25826391912368]
QH9と呼ばれる新しい量子ハミルトンデータセットを生成し、999または2998の分子動力学軌道に対して正確なハミルトン行列を提供する。
現在の機械学習モデルでは、任意の分子に対するハミルトン行列を予測する能力がある。
論文 参考訳(メタデータ) (2023-06-15T23:39:07Z) - Artificial intelligence approaches for materials-by-design of energetic
materials: state-of-the-art, challenges, and future directions [0.0]
我々は,AIによる材料設計の進歩とそのエネルギー材料への応用についてレビューする。
文献における手法を,少数のデータから学習する能力の観点から評価する。
本稿では,メタラーニング,アクティブラーニング,ベイズラーニング,半/弱教師付きラーニングなど,EM教材の今後の研究方向性について提案する。
論文 参考訳(メタデータ) (2022-11-15T14:41:11Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
我々は,量子デバイスのダイナミクスを特徴付ける手法を開発し,デバイスパラメータを学習する。
このアプローチは、数値的に生成された実験データに基づいてトレーニングされた物理に依存しないリカレントニューラルネットワークより優れている。
このデモンストレーションは、ドメイン知識を活用することで、この特徴付けタスクの正確性と効率が向上することを示す。
論文 参考訳(メタデータ) (2021-06-24T15:58:57Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
ナノスケールバイオメディカルエンジニアリングにおける機械学習の利用に関する既存の研究について概説する。
ML問題として定式化できる主な課題は、3つの主要なカテゴリに分類される。
提示された方法論のそれぞれについて、その原則、応用、制限に特に重点を置いている。
論文 参考訳(メタデータ) (2020-08-05T15:45:54Z) - Predictive modeling approaches in laser-based material processing [59.04160452043105]
本研究の目的は,レーザー加工が材料構造に及ぼす影響を自動予測することである。
その焦点は、統計的および機械学習の代表的なアルゴリズムのパフォーマンスに焦点を当てている。
結果は、材料設計、テスト、生産コストを削減するための体系的な方法論の基礎を設定することができる。
論文 参考訳(メタデータ) (2020-06-13T17:28:52Z) - Graph Neural Network for Hamiltonian-Based Material Property Prediction [56.94118357003096]
無機材料のバンドギャップを予測できるいくつかの異なるグラフ畳み込みネットワークを提示し、比較する。
モデルは、それぞれの軌道自体の情報と相互の相互作用の2つの異なる特徴を組み込むように開発されている。
その結果,クロスバリデーションにより予測精度が期待できることがわかった。
論文 参考訳(メタデータ) (2020-05-27T13:32:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。