Explainable AI for Engineering Design: A Unified Approach of Systems Engineering and Component- Based Deep Learning Demonstrated by Energy- Efficient Building Design
- URL: http://arxiv.org/abs/2108.13836v7
- Date: Mon, 9 Sep 2024 17:55:16 GMT
- Title: Explainable AI for Engineering Design: A Unified Approach of Systems Engineering and Component- Based Deep Learning Demonstrated by Energy- Efficient Building Design
- Authors: Philipp Geyer, Manav Mahan Singh, Xia Chen,
- Abstract summary: We propose a component-based approach to create, partial component models by machine learning (ML)
This, component-based approach aligns deep learning with systems, engineering (SE)
The, approach adapts the model structure to engineering methods of, systems engineering and to domain knowledge.
- Score: 0.8265473560266577
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Data-driven models created by machine learning, gain in importance in all fields of design and engineering. They, have high potential to assist decision-makers in creating novel, artefacts with better performance and sustainability. However,, limited generalization and the black-box nature of these models, lead to limited explainability and reusability. To overcome this, situation, we propose a component-based approach to create, partial component models by machine learning (ML). This, component-based approach aligns deep learning with systems, engineering (SE). The key contribution of the component-based, method is that activations at interfaces between the components, are interpretable engineering quantities. In this way, the, hierarchical component system forms a deep neural network, (DNN) that a priori integrates information for engineering, explainability. The, approach adapts the model structure to engineering methods of, systems engineering and to domain knowledge. We examine the, performance of the approach by the field of energy-efficient, building design: First, we observed better generalization of the, component-based method by analyzing prediction accuracy, outside the training data. Especially for representative designs, different in structure, we observe a much higher accuracy, (R2 = 0.94) compared to conventional monolithic methods, (R2 = 0.71). Second, we illustrate explainability by exemplary, demonstrating how sensitivity information from SE and rules, from low-depth decision trees serve engineering. Third, we, evaluate explainability by qualitative and quantitative methods, demonstrating the matching of preliminary knowledge and data-driven, derived strategies and show correctness of activations at, component interfaces compared to white-box simulation results, (envelope components: R2 = 0.92..0.99; zones: R2 = 0.78..0.93).
Related papers
- Toward using explainable data-driven surrogate models for treating performance-based seismic design as an inverse engineering problem [0.0]
This study presents a methodology to treat performance-based seismic design as an inverse engineering problem.<n>By implementing explainable machine learning models, this methodology directly maps design variables and performance metrics.<n>The developed methodology is then applied to two different inventories of steel and concrete moment frames in Los Angeles and Charleston.
arXiv Detail & Related papers (2025-08-01T03:08:19Z) - Toward Knowledge-Guided AI for Inverse Design in Manufacturing: A Perspective on Domain, Physics, and Human-AI Synergy [0.0]
We argue for a new generation of design systems that transcend black-box modeling by integrating domain knowledge, physics-informed learning, and intuitive human-AI interfaces.<n>Through illustrative examples and conceptual frameworks, we advocate that inverse design in manufacturing should evolve into a unified ecosystem.
arXiv Detail & Related papers (2025-05-29T08:15:27Z) - Explainable Prediction of the Mechanical Properties of Composites with CNNs [11.662972025976192]
We show that convolutional neural networks (CNNs) equipped with methods from explainable AI (XAI) can be successfully deployed to solve this problem.<n>Our approach uses customised CNNs trained on a dataset we generate using transverse tension tests to predict composites' mechanical properties.<n>We then use SHAP and Integrated Gradients, two post-hoc XAI methods, to explain the predictions, showing that the CNNs use the critical geometrical features that influence the composites' behaviour.
arXiv Detail & Related papers (2025-05-20T08:54:06Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
Large-scale Mixture of Experts (MoE) models offer enhanced model capacity and computational efficiency through conditional computation.
deploying and running inference on these models presents significant challenges in computational resources, latency, and energy efficiency.
This survey analyzes optimization techniques for MoE models across the entire system stack.
arXiv Detail & Related papers (2024-12-18T14:11:15Z) - SMLE: Safe Machine Learning via Embedded Overapproximation [4.129133569151574]
We consider the task of training differentiable ML models guaranteed to satisfy designer-chosen properties.
This is very challenging, due to the computational complexity of rigorously verifying and enforcing compliance in modern neural models.
We provide an innovative approach based on three components: 1) a general, simple architecture enabling efficient verification with a conservative semantic.
We evaluate our approach on properties defined by linear inequalities in regression, and on mutually exclusive classes in multilabel classification.
arXiv Detail & Related papers (2024-09-30T17:19:57Z) - The Role of Foundation Models in Neuro-Symbolic Learning and Reasoning [54.56905063752427]
Neuro-Symbolic AI (NeSy) holds promise to ensure the safe deployment of AI systems.
Existing pipelines that train the neural and symbolic components sequentially require extensive labelling.
New architecture, NeSyGPT, fine-tunes a vision-language foundation model to extract symbolic features from raw data.
arXiv Detail & Related papers (2024-02-02T20:33:14Z) - Interpretable Meta-Learning of Physical Systems [4.343110120255532]
Recent meta-learning methods rely on black-box neural networks, resulting in high computational costs and limited interpretability.
We argue that multi-environment generalization can be achieved using a simpler learning model, with an affine structure with respect to the learning task.
We demonstrate the competitive generalization performance and the low computational cost of our method by comparing it to state-of-the-art algorithms on physical systems.
arXiv Detail & Related papers (2023-12-01T10:18:50Z) - Human as Points: Explicit Point-based 3D Human Reconstruction from
Single-view RGB Images [78.56114271538061]
We introduce an explicit point-based human reconstruction framework called HaP.
Our approach is featured by fully-explicit point cloud estimation, manipulation, generation, and refinement in the 3D geometric space.
Our results may indicate a paradigm rollback to the fully-explicit and geometry-centric algorithm design.
arXiv Detail & Related papers (2023-11-06T05:52:29Z) - A Recursive Bateson-Inspired Model for the Generation of Semantic Formal
Concepts from Spatial Sensory Data [77.34726150561087]
This paper presents a new symbolic-only method for the generation of hierarchical concept structures from complex sensory data.
The approach is based on Bateson's notion of difference as the key to the genesis of an idea or a concept.
The model is able to produce fairly rich yet human-readable conceptual representations without training.
arXiv Detail & Related papers (2023-07-16T15:59:13Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Towards the One Learning Algorithm Hypothesis: A System-theoretic
Approach [0.0]
The existence of a universal learning architecture in human cognition is a widely spread conjecture supported by experimental findings from neuroscience.
We develop a closed-loop system with three main components: (i) a multi-resolution analysis pre-processor, (ii) a group-invariant feature extractor, and (iii) a progressive knowledge-based learning module.
We introduce a novel learning algorithm that constructs progressively growing knowledge representations in multiple resolutions.
arXiv Detail & Related papers (2021-12-04T05:54:33Z) - Physics guided machine learning using simplified theories [0.0]
Recent applications of machine learning, in particular deep learning, motivate the need to address the generalizability of the statistical inference approaches in physical sciences.
We introduce a modular physics guided machine learning framework to improve the accuracy of such data-driven predictive engines.
arXiv Detail & Related papers (2020-12-18T21:30:40Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
We propose a novel dependency syntactic knowledge augmented interactive architecture with multi-task learning for end-to-end ABSA.
This model is capable of fully exploiting the syntactic knowledge (dependency relations and types) by leveraging a well-designed Dependency Relation Embedded Graph Convolutional Network (DreGcn)
Extensive experimental results on three benchmark datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-04T14:59:32Z) - Machine Learning Enabled Discovery of Application Dependent Design
Principles for Two-dimensional Materials [1.1470070927586016]
We train an ensemble of models to predict thermodynamic, mechanical, and electronic properties.
We carry out a screening of nearly 45,000 structures for two largely disjoint applications.
We find that hybrid organic-inorganic perovskites with lead and tin tend to be good candidates for solar cell applications.
arXiv Detail & Related papers (2020-03-19T23:13:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.