論文の概要: Uniform Consistency in Nonparametric Mixture Models
- arxiv url: http://arxiv.org/abs/2108.14003v1
- Date: Tue, 31 Aug 2021 17:53:52 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-01 14:22:53.156311
- Title: Uniform Consistency in Nonparametric Mixture Models
- Title(参考訳): 非パラメトリック混合モデルにおける均一性
- Authors: Bryon Aragam and Ruiyi Yang
- Abstract要約: 非パラメトリック混合モデルと混合回帰モデルにおける一様整合性について検討する。
混合回帰の場合、回帰関数の$L1$収束を証明し、成分回帰関数を任意に交わすことができる。
- 参考スコア(独自算出の注目度): 12.382836502781258
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study uniform consistency in nonparametric mixture models as well as
closely related mixture of regression (also known as mixed regression) models,
where the regression functions are allowed to be nonparametric and the error
distributions are assumed to be convolutions of a Gaussian density. We
construct uniformly consistent estimators under general conditions while
simultaneously highlighting several pain points in extending existing pointwise
consistency results to uniform results. The resulting analysis turns out to be
nontrivial, and several novel technical tools are developed along the way. In
the case of mixed regression, we prove $L^1$ convergence of the regression
functions while allowing for the component regression functions to intersect
arbitrarily often, which presents additional technical challenges. We also
consider generalizations to general (i.e. non-convolutional) nonparametric
mixtures.
- Abstract(参考訳): 非パラメトリック混合モデルにおける一様整合性と、回帰関数が非パラメトリックであることが認められ、誤差分布がガウス密度の畳み込みであると仮定される回帰モデル(混合回帰モデルとも呼ばれる)の密接に関連する混合について検討する。
一般条件下で一様一貫した推定器を構築し、同時に既存の一貫した結果から一貫した結果へと拡張する際の痛点をいくつか強調する。
その結果、分析は簡単ではないことが判明し、その過程でいくつかの新しい技術ツールが開発されている。
混合回帰の場合、成分回帰関数が任意に頻繁に交わることを可能にしながら、回帰関数の$l^1$収束を証明し、さらなる技術的課題を提起する。
一般(つまり)への一般化も検討する。
非畳み込みの)非パラメトリック混合物。
関連論文リスト
- Transition of $α$-mixing in Random Iterations with Applications in Queuing Theory [0.0]
本研究では, 混合特性を外因性回帰器から結合論による応答へ伝達することを示す。
また,非定常環境下においても,ドリフトおよびマイノライズ条件のランダム環境におけるマルコフ連鎖について検討した。
論文 参考訳(メタデータ) (2024-10-07T14:13:37Z) - Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
我々は、パラメトリックな$sqrt n $-rateで収束する、最も近い隣人の新しい修正とマッチング推定器を開発する。
我々は,非パラメトリック関数推定器は含まないこと,特に標本サイズ依存パラメータの平滑化には依存していないことを強調する。
論文 参考訳(メタデータ) (2024-07-11T13:28:34Z) - Unveiling the Cycloid Trajectory of EM Iterations in Mixed Linear Regression [5.883916678819683]
2成分混合線形回帰(2MLR)における反復の軌跡と期待最大化(EM)アルゴリズムの収束率について検討する。
近年, ノイズレスおよび高SNR環境下での2MLRにおけるEMの超線形収束が確立されている。
論文 参考訳(メタデータ) (2024-05-28T14:46:20Z) - Conformal inference for regression on Riemannian Manifolds [49.7719149179179]
回帰シナリオの予測セットは、応答変数が$Y$で、多様体に存在し、Xで表される共変数がユークリッド空間にあるときに検討する。
我々は、多様体上のこれらの領域の経験的バージョンが、その集団に対するほぼ確実に収束していることを証明する。
論文 参考訳(メタデータ) (2023-10-12T10:56:25Z) - Strong identifiability and parameter learning in regression with
heterogeneous response [5.503319042839695]
本研究では, 有限混合回帰モデルにおける強い識別可能性, 条件密度およびパラメータ推定の収束率, およびベイズ後部収縮挙動について検討する。
本稿では,本論文で報告されているいくつかの一般的な回帰混合モデルに見られるパラメータ学習行動について,シミュレーション研究とデータ図解を提供する。
論文 参考訳(メタデータ) (2022-12-08T05:58:13Z) - On Learning Mixture Models with Sparse Parameters [44.3425205248937]
本研究では, 高次元スパルス潜時パラメータベクトルの混合について検討し, これらのベクトルの回復支援問題について考察する。
潜伏空間の次元に対数的サンプル複雑性が依存する回復支援のための効率的なアルゴリズムを提供する。
論文 参考訳(メタデータ) (2022-02-24T07:44:23Z) - On the Double Descent of Random Features Models Trained with SGD [78.0918823643911]
勾配降下(SGD)により最適化された高次元におけるランダム特徴(RF)回帰特性について検討する。
本研究では, RF回帰の高精度な非漸近誤差境界を, 定常および適応的なステップサイズSGD設定の下で導出する。
理論的にも経験的にも二重降下現象を観察する。
論文 参考訳(メタデータ) (2021-10-13T17:47:39Z) - Nonlinear Independent Component Analysis for Continuous-Time Signals [85.59763606620938]
このプロセスの混合物の観察から多次元音源過程を復元する古典的問題を考察する。
このリカバリは、この混合物が十分に微分可能で可逆な関数によって与えられる場合、多くの一般的なプロセスのモデル(座標の順序と単調スケーリングまで)に対して可能であることを示す。
論文 参考訳(メタデータ) (2021-02-04T20:28:44Z) - The Connection between Discrete- and Continuous-Time Descriptions of
Gaussian Continuous Processes [60.35125735474386]
我々は、一貫した推定子をもたらす離散化が粗粒化下での不変性を持つことを示す。
この結果は、導関数再構成のための微分スキームと局所時間推論アプローチの組み合わせが、2次または高次微分方程式の時系列解析に役立たない理由を説明する。
論文 参考訳(メタデータ) (2021-01-16T17:11:02Z) - Kernel Methods for Causal Functions: Dose, Heterogeneous, and
Incremental Response Curves [26.880628841819004]
我々は、一般化されたカーネルリッジ回帰のオリジナル解析により、改良された有限標本率と一様整合性を証明した。
本研究は,本研究の主な成果を,前部および後部ドア基準で同定した反事実分布と因果関数に拡張する。
論文 参考訳(メタデータ) (2020-10-10T00:53:11Z) - Consistent Estimation of Identifiable Nonparametric Mixture Models from
Grouped Observations [84.81435917024983]
この研究は、グループ化された観測から任意の同定可能な混合モデルを一貫して推定するアルゴリズムを提案する。
ペア化された観測のために実践的な実装が提供され、アプローチは既存の手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-06-12T20:44:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。