論文の概要: Two-step Domain Adaptation for Mitosis Cell Detection in Histopathology
Images
- arxiv url: http://arxiv.org/abs/2109.00109v1
- Date: Tue, 31 Aug 2021 23:14:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-02 14:13:29.465971
- Title: Two-step Domain Adaptation for Mitosis Cell Detection in Histopathology
Images
- Title(参考訳): 病理組織像におけるミトコンドリア細胞検出のための2段階ドメイン適応
- Authors: Ramin Nateghi, Fattaneh Pourakpour
- Abstract要約: 高速RCNNと畳み込みニューラルネットワーク(CNN)を用いた2段階領域シフト不変ミオシス細胞検出法を提案する。
我々は,染色増強技術を用いて,既存の病理像のドメインシフト版を多数生成する。
実験の結果,提案手法は,領域シフトした病理組織像に対して有望な性能を達成できることが示された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a two-step domain shift-invariant mitosis cell detection method
based on Faster RCNN and a convolutional neural network (CNN). We generate
various domain-shifted versions of existing histopathology images using a stain
augmentation technique, enabling our method to effectively learn various stain
domains and achieve better generalization. The performance of our method is
evaluated on the preliminary test data set of the MIDOG-2021 challenge. The
experimental results demonstrate that the proposed mitosis detection method can
achieve promising performance for domain-shifted histopathology images.
- Abstract(参考訳): 本稿では,高速RCNNと畳み込みニューラルネットワーク(CNN)に基づく2段階領域シフト不変ミオシス細胞検出法を提案する。
我々は,染色拡大技術を用いて既存の病理画像のドメインシフトバージョンを複数生成し,様々な染色領域を効果的に学習し,より高度な一般化を実現する。
本手法の性能はMIDOG-2021チャレンジの予備試験データセットに基づいて評価した。
実験の結果,提案手法は,領域シフトした病理組織像に対して有望な性能を達成できることが示された。
関連論文リスト
- CriDiff: Criss-cross Injection Diffusion Framework via Generative Pre-train for Prostate Segmentation [60.61972883059688]
CridiffはCrisscross Injection Strategy(CIS)とGenerative Pre-train(GP)アプローチによる2段階の機能注入フレームワークである。
CISでは,複数レベルのエッジ特徴と非エッジ特徴を効果的に学習するために,並列コンディショナーを2つ提案した。
GPアプローチは、追加パラメータを追加することなく、画像特徴と拡散モデルとの矛盾を緩和する。
論文 参考訳(メタデータ) (2024-06-20T10:46:50Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - Domain-Adaptive Learning: Unsupervised Adaptation for Histology Images
with Improved Loss Function Combination [3.004632712148892]
本稿では,H&E染色組織像を対象とした非教師なし領域適応(UDA)のための新しいアプローチを提案する。
本手法では, 組織像に特有の課題に対処するために, 慎重に選択された既存の損失関数とともに, 新たな損失関数を提案する。
提案手法は, 組織像の最先端技術を超え, 精度, 堅牢性, 一般化の面で広く評価されている。
論文 参考訳(メタデータ) (2023-09-29T12:11:16Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
深層学習に基づくニューラルネットワークを用いて,OCTの軸運動とコロナ運動のアーチファクトを1つのスキャンで補正する。
実験結果から, 提案手法は動作アーチファクトを効果的に補正し, 誤差が他の方法よりも小さいことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:55:19Z) - Unsupervised Domain Adaptation for Neuron Membrane Segmentation based on
Structural Features [16.594977729459774]
EM画像におけるクロスドメインニューロン膜セグメンテーションにおける非教師なし領域適応(UDA)法の性能向上を提案する。
まず,適応時の構造的特徴を考慮した特徴量モジュールを設計した。
第2に,クロスドメイン画像の解像度を調整することにより,領域間ギャップを軽減する構造的特徴量に基づく超解像手法を提案する。
論文 参考訳(メタデータ) (2023-05-04T05:55:19Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
条件付き可逆ニューラルネットワーク(cINN)に基づくドメイン転送手法を提案する。
提案手法は本質的に,その可逆的アーキテクチャによるサイクル一貫性を保証し,ネットワークトレーニングを最大限効率的に行うことができる。
提案手法は,2つの下流分類タスクにおいて,現実的なスペクトルデータの生成を可能にし,その性能を向上する。
論文 参考訳(メタデータ) (2023-03-17T18:00:27Z) - Improving Mitosis Detection Via UNet-based Adversarial Domain
Homogenizer [1.7298084639157258]
本稿では,入力画像の対角的再構成による組織像の領域差を軽減するため,有糸分裂検出のためのドメインホモジェナイザを提案する。
我々は,前処理した画像間の領域差の低減を観察することにより,ドメインホモジェナイザの有効性を示す。
このホモジェナイザーと後続の網膜-網状物体検出器を用いて、検出されたミオティックな図形の平均精度で2021 MIDOGチャレンジのベースラインを上回りました。
論文 参考訳(メタデータ) (2022-09-15T11:15:57Z) - Assessing domain adaptation techniques for mitosis detection in
multi-scanner breast cancer histopathology images [0.6999740786886536]
2つのミトーシス検出モデルと2つのスタイル転送法を訓練し、ミトーシス検出性能を向上させるために後者の有用性を評価する。
これらの最も優れたU-Netは、MIDOG 2021の予備テストセットでF1スコア0.693を達成した。
論文 参考訳(メタデータ) (2021-09-01T16:27:46Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
本論文では,UDAスキームに基づくBiGL(Bidirectional Global-to-Local)適応フレームワークを提案する。
具体的には、脳腫瘍をセグメント化するために、双方向画像合成およびセグメンテーションモジュールを提案する。
提案手法は, 最先端の非教師なし領域適応法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2021-05-17T10:11:45Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
我々は、Synergistic Image and Feature Alignment (SIFA)と名付けられた新しい教師なしドメイン適応フレームワークを提案する。
提案するSIFAは、画像と特徴の両方の観点から、ドメインの相乗的アライメントを行う。
2つの異なるタスクに対する実験結果から,SIFA法は未ラベル対象画像のセグメンテーション性能を向上させるのに有効であることが示された。
論文 参考訳(メタデータ) (2020-02-06T13:49:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。