Deep Learning with Uncertainty Quantification for Predicting the Segmentation Dice Coefficient of Prostate Cancer Biopsy Images
- URL: http://arxiv.org/abs/2109.00115v2
- Date: Fri, 27 Dec 2024 22:21:01 GMT
- Title: Deep Learning with Uncertainty Quantification for Predicting the Segmentation Dice Coefficient of Prostate Cancer Biopsy Images
- Authors: Audrey Xie, Elhoucine Elfatimi, Sambuddha Ghosal, Pratik Shah,
- Abstract summary: Deep learning models (DLMs) can achieve state-of-the-art performance in histopathology image segmentation and classification.
Uncertainty estimates of DLMs can increase trust by identifying predictions and images that need further review.
This study reports DLMs trained with uncertainty estimations, using randomly weights and Monte Carlo dropout, to segment tumors from microscopic Hematoxylin and Eosin dye stained prostate core biopsy histology RGB images.
- Score: 0.7499722271664147
- License:
- Abstract: Deep learning models (DLMs) can achieve state-of-the-art performance in histopathology image segmentation and classification, but have limited deployment potential in real-world clinical settings. Uncertainty estimates of DLMs can increase trust by identifying predictions and images that need further review. Dice scores and coefficients (Dice) are benchmarks for evaluation of image segmentation performance, but are usually not evaluated with DLM uncertainty quantification. This study reports DLMs trained with uncertainty estimations, using randomly initialized weights and Monte Carlo dropout, to segment tumors from microscopic Hematoxylin and Eosin dye stained prostate core biopsy histology RGB images. Image-level maps showed significant correlation (Spearman's rank, p < 0.05) between overall and specific prostate tissue image sub-region uncertainties with model performance estimations by Dice. This study reports that linear models, which can predict Dice segmentation scores from multiple clinical sub-region-based uncertainties of prostate cancer, can serve as a more comprehensive performance evaluation metric without loss in predictive capability of DLMs, with a low root mean square error.
Related papers
- Uncertainty Quantified Deep Learning and Regression Analysis Framework for Image Segmentation of Skin Cancer Lesions [0.0]
Deep learning models (DLMs) frequently achieve accurate segmentation and classification of tumors from medical images.
DLMs lacking feedback on their image segmentation mechanisms, such as Dice coefficients and confidence in their performance, face challenges when processing previously unseen images in real-world clinical settings.
This study reports two DLMs, one trained from scratch and another based on transfer learning, with Monte Carlo dropout or Bayes-by-backprop uncertainty estimations to segment lesions from the publicly available The International Skin Imaging Collaboration-19 dermoscopy image database with cancerous lesions.
arXiv Detail & Related papers (2024-12-28T04:06:44Z) - Validation of musculoskeletal segmentation model with uncertainty estimation for bone and muscle assessment in hip-to-knee clinical CT images [0.795142520168573]
This study aimed to validate an improved deep learning model for volumetric MSK segmentation of the hip and thigh.
The model has shown an overall improvement with respect to all segmentation accuracy and structure volume/density evaluation metrics.
arXiv Detail & Related papers (2024-09-04T14:49:35Z) - Counterfactuals and Uncertainty-Based Explainable Paradigm for the Automated Detection and Segmentation of Renal Cysts in Computed Tomography Images: A Multi-Center Study [1.83277723272657]
Routine computed tomography (CT) scans often detect a wide range of renal cysts, some of which may be malignant.
Current segmentation methods, however, do not offer sufficient interpretability at the feature and pixel levels.
We developed an interpretable segmentation framework and validated it on a multi-centric dataset.
arXiv Detail & Related papers (2024-08-07T14:14:05Z) - Deep Bayesian segmentation for colon polyps: Well-calibrated predictions in medical imaging [0.0]
We build different Bayesian neural network approaches to develop semantic segmentation of colorectal polyp images.
We found that these models not only provide state-of-the-art performance on the segmentation of this medical dataset but also, yield accurate uncertainty estimates.
arXiv Detail & Related papers (2024-07-23T16:13:27Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Trustworthy Medical Segmentation with Uncertainty Estimation [0.7829352305480285]
This paper introduces a new Bayesian deep learning framework for uncertainty quantification in segmentation neural networks.
We evaluate the proposed framework on medical image segmentation data from Magnetic Resonances Imaging and Computed Tomography scans.
Our experiments on multiple benchmark datasets demonstrate that the proposed framework is more robust to noise and adversarial attacks as compared to state-of-the-art segmentation models.
arXiv Detail & Related papers (2021-11-10T22:46:05Z) - Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical
Image Segmentation [92.9634065964963]
We present a new semi-supervised segmentation model, namely, conservative-radical network (CoraNet) based on our uncertainty estimation and separate self-training strategy.
Compared with the current state of the art, our CoraNet has demonstrated superior performance.
arXiv Detail & Related papers (2021-10-17T08:49:33Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
arXiv Detail & Related papers (2021-04-02T20:52:05Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.