Long-range interacting quantum systems
- URL: http://arxiv.org/abs/2109.01063v1
- Date: Thu, 2 Sep 2021 16:30:36 GMT
- Title: Long-range interacting quantum systems
- Authors: Nicol\`o Defenu, Tobias Donner, Tommaso Macr\`i, Guido Pagano, Stefano
Ruffo, Andrea Trombettoni
- Abstract summary: We present and identify the common and (mostly) universal features induced by long-range interactions in the behaviour of quantum many-body systems.
Cases of competition with other local effects in the above mentioned setups are also reviewed.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The presence of non-local and long-range interactions in quantum systems
induces several peculiar features in their equilibrium and out-of-equilibrium
behavior. In current experimental platforms control parameters such as
interaction range, temperature, density and dimension can be changed. The
existence of universal scaling regimes, where diverse physical systems and
observables display quantitative agreement, generates a common framework, where
the efforts of different research communities can be -- in some cases
rigorously -- connected. Still, the application of this general framework to
particular experimental realisations requires the identification of the regimes
where the universality phenomenon is expected to appear. In the present review
we summarise the recent investigations of many-body quantum systems with
long-range interactions, which are currently realised in Rydberg atom arrays,
dipolar systems, trapped ion setups and cold atoms in cavity experiments. Our
main aim is to present and identify the common and (mostly) universal features
induced by long-range interactions in the behaviour of quantum many-body
systems. We will discuss both the case of very strong non-local couplings, i.e.
the non-additive regime, and the one in which energy is extensive, but
nevertheless low-energy, long wavelength properties are altered with respect to
the short-range limit. Cases of competition with other local effects in the
above mentioned setups are also reviewed.
Related papers
- Quantum thermalization and Floquet engineering in a spin ensemble with a clock transition [3.55103790558995]
We study an optically addressable solid-state spin system comprising a strongly interacting ensemble of millions of ytterbium-171 ions in a crystal.
Our findings indicate that an ensemble of rare-earth ions serves as a versatile testbed for many-body physics and offers valuable insights for advancing quantum technologies.
arXiv Detail & Related papers (2024-08-01T03:16:25Z) - Long-range interacting systems are locally non-interacting [0.0]
Long-range interacting systems display novel physics, such as nonlinear light cones for the propagation of information.
We prove that in the thermodynamic limit local properties, captured by reduced quantum states, are described by an emergent non-interacting theory.
arXiv Detail & Related papers (2024-07-02T10:34:58Z) - Universal fluctuations and noise learning from Hilbert-space ergodicity [3.55103790558995]
Recently a quantum notion of ergodicity has been proposed, namely that isolated, global quantum states uniformly explore their available state space.
Here we observe signatures of this process with an experimental Rydberg quantum simulator and various numerical models.
We then consider the case of an open system interacting noisily with an external environment.
arXiv Detail & Related papers (2024-03-18T17:09:05Z) - Out-of-equilibrium dynamics of quantum many-body systems with long-range interactions [0.0]
Experimental progress in atomic, molecular, and optical platforms has stimulated strong and broad interest in quantum coherent dynamics.
This Report presents a systematic and organic review of recent advances in the field.
arXiv Detail & Related papers (2023-07-10T18:00:16Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Dynamics of a multipartite hybrid quantum system with beamsplitter,
dipole-dipole, and Ising interactions [0.0]
We make use of one such hybrid bipartite quantum model, with one subsystem made of a pair of qubits and another comprising a pair of oscillators.
Our basic model is the standard double Jaynes-Cummings system, which is known to support both entanglement transfer and entanglement sudden death.
We show that compared to the beamsplitter or dipole-dipole interaction, the Ising interaction can have a significant positive impact on entanglement sudden death and birth.
arXiv Detail & Related papers (2021-12-21T21:12:08Z) - Spin many-body phases in standard and topological waveguide QED
simulators [68.8204255655161]
We study the many-body behaviour of quantum spin models using waveguide QED setups.
We find novel many-body phases different from the ones obtained in other platforms.
arXiv Detail & Related papers (2021-06-22T09:44:20Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.