論文の概要: Investigate the Correlation of Breast Cancer Dataset using Different
Clustering Technique
- arxiv url: http://arxiv.org/abs/2109.01538v1
- Date: Fri, 3 Sep 2021 14:02:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-06 16:18:46.617195
- Title: Investigate the Correlation of Breast Cancer Dataset using Different
Clustering Technique
- Title(参考訳): 異なるクラスタリング手法を用いた乳癌データセットの相関性の検討
- Authors: Somenath Chakraborty, Beddhu Murali
- Abstract要約: 本稿では,クラスタリング手法の異なる方法と事前処理について検討する。
この詳細な分析は、より堅牢で正確な医療予後システムを設計するためのフットプリントを構築する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The objectives of this paper are to explore ways to analyze breast cancer
dataset in the context of unsupervised learning without prior training model.
The paper investigates different ways of clustering techniques as well as
preprocessing. This in-depth analysis builds the footprint which can further
use for designing a most robust and accurate medical prognosis system. This
paper also give emphasis on correlations of data points with different standard
benchmark techniques. Keywords: Breast cancer dataset, Clustering Technique
Hopkins Statistic, K-means Clustering, k-medoids or partitioning around medoids
(PAM)
- Abstract(参考訳): 本研究の目的は,事前のトレーニングモデルなしに教師なし学習の文脈で乳癌データセットを分析する方法を検討することである。
本稿では,クラスタリング手法の異なる方法と事前処理について検討する。
この詳細な分析は、最も堅牢で正確な医療予後システムの設計に使用できる足跡を構築する。
本稿では,異なる標準ベンチマーク手法によるデータポイントの相関性も強調する。
キーワード:乳がんデータセット、クラスタリングテクニック Hopkins Statistic、K-means Clustering、k-medoids or partitioning around medoids (PAM)
関連論文リスト
- EP-SAM: Weakly Supervised Histopathology Segmentation via Enhanced Prompt with Segment Anything [3.760646312664378]
がんなどの疾患の病理診断は、従来、医師や病理医による形態学的特徴の評価に頼っていた。
近年,診断支援ツールとしてコンピュータ支援診断(CAD)システムの進歩が注目されている。
本稿では,クラスアクティベーションマップとSAMに基づく擬似ラベルを組み合わせ,弱教師付きセマンティックセマンティックセグメンテーション(WSSS)モデルを提案する。
論文 参考訳(メタデータ) (2024-10-17T14:55:09Z) - Artificial Data Point Generation in Clustered Latent Space for Small
Medical Datasets [4.542616945567623]
本稿では,クラスタ化潜在空間(AGCL)における人工データポイント生成手法を提案する。
AGCLは、合成データ生成により、小さな医療データセットの分類性能を向上させるように設計されている。
顔の表情データを利用してパーキンソン病検診に応用した。
論文 参考訳(メタデータ) (2024-09-26T09:51:08Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
本稿では,学習可能な重みに基づくハイブリッド医療画像セグメンテーション手法を提案する。
我々のアプローチはどんなハイブリッドモデルにも簡単に統合でき、外部のトレーニングデータを必要としない。
多臓器・肺がんセグメンテーションタスクの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-06-15T17:55:05Z) - Rethinking k-means from manifold learning perspective [122.38667613245151]
平均推定なしで直接データのクラスタを検出する新しいクラスタリングアルゴリズムを提案する。
具体的には,バタワースフィルタを用いてデータ点間の距離行列を構成する。
異なる視点に埋め込まれた相補的な情報をうまく活用するために、テンソルのSchatten p-norm正規化を利用する。
論文 参考訳(メタデータ) (2023-05-12T03:01:41Z) - Detection and Evaluation of Clusters within Sequential Data [58.720142291102135]
Block Markov Chainsのクラスタリングアルゴリズムは理論的最適性を保証する。
特に、私たちのシーケンシャルデータは、ヒトのDNA、テキスト、動物運動データ、金融市場から派生しています。
ブロックマルコフ連鎖モデルの仮定は、実際に探索データ解析において有意義な洞察を得られることが判明した。
論文 参考訳(メタデータ) (2022-10-04T15:22:39Z) - Open-Set Recognition of Breast Cancer Treatments [91.3247063132127]
オープンセット認識は、テストサンプルをトレーニングや"未知"から既知のクラスの1つに分類することで、分類タスクを一般化する
乳がん患者データに対して,画像データセットの最先端結果を実現するガウス混合変分オートエンコーダモデルを適用した。
より正確でロバストな分類結果が得られ,F1の平均値が24.5%上昇したばかりでなく,臨床環境への展開性の観点からも,オープンセット認識の再検討を行った。
論文 参考訳(メタデータ) (2022-01-09T04:35:55Z) - Mitosis Detection Under Limited Annotation: A Joint Learning Approach [5.117836409118142]
深層学習に基づく有糸分裂検出は病理学者と同等であるが、トレーニングには大きなラベル付きデータが必要である。
そこで本研究では,距離距離メトリック学習を用いて,軟弱損失によるクラスラベル情報とサンプル間の空間分布情報を活用することで,ミトーシス検出の深層分類フレームワークを提案する。
本フレームワークは,トレーニングデータ全体の使用方法と比較して,少ないトレーニングデータによる検出を著しく改善し,同等あるいは優れたパフォーマンスを実現している。
論文 参考訳(メタデータ) (2020-06-17T10:46:29Z) - The scalable Birth-Death MCMC Algorithm for Mixed Graphical Model
Learning with Application to Genomic Data Integration [0.0]
本稿では,異なるタイプのマルチオミックデータを解析するための混合グラフィカルモデルを提案する。
モデル選択結果の計算効率と精度の両面で,本手法が優れていることがわかった。
論文 参考訳(メタデータ) (2020-05-08T16:34:58Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
本研究は,集中治療室における危険因子の同定と医療関連感染症の予測に焦点をあてる。
感染発生率の低減に向けた意思決定を支援することを目的とする。
論文 参考訳(メタデータ) (2020-05-07T16:13:12Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
35,000以上のニューラルネットワークモデルをトレーニングし、一般的な成果化技術を駆使しています。
RNA-seqは128以上のサブセットであっても非常に冗長で情報的であることがわかった。
論文 参考訳(メタデータ) (2020-04-30T20:42:17Z) - Learning from Suspected Target: Bootstrapping Performance for Breast
Cancer Detection in Mammography [6.323318523772466]
対象領域の選択と訓練を行う新しいサンプリング手順とともに,新しいトップ可能性損失を導入する。
まず,提案手法をプライベートな高密度マンモグラフィーデータセット上で検証する。
以上の結果から,本手法は偽陽性率を大幅に低減し,質量型癌検出では0.25倍の特異性を示した。
論文 参考訳(メタデータ) (2020-03-01T09:04:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。