論文の概要: Uncovering the Limits of Text-based Emotion Detection
- arxiv url: http://arxiv.org/abs/2109.01900v1
- Date: Sat, 4 Sep 2021 16:40:06 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-07 16:57:19.395906
- Title: Uncovering the Limits of Text-based Emotion Detection
- Title(参考訳): テキストに基づく感情検出の限界を明らかにする
- Authors: Nurudin Alvarez-Gonzalez, Andreas Kaltenbrunner, Vicen\c{c} G\'omez
- Abstract要約: 感情分類のための最大のコーパスは、GoEmotions、読者によってラベル付けされた58Kメッセージ、Vent、ライターがラベル付けされた33Mメッセージである。
我々はベンチマークを設計し、BERT上に2つのシンプルな新しいモデルを含むいくつかの特徴空間と学習アルゴリズムを評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identifying emotions from text is crucial for a variety of real world tasks.
We consider the two largest now-available corpora for emotion classification:
GoEmotions, with 58k messages labelled by readers, and Vent, with 33M
writer-labelled messages. We design a benchmark and evaluate several feature
spaces and learning algorithms, including two simple yet novel models on top of
BERT that outperform previous strong baselines on GoEmotions. Through an
experiment with human participants, we also analyze the differences between how
writers express emotions and how readers perceive them. Our results suggest
that emotions expressed by writers are harder to identify than emotions that
readers perceive. We share a public web interface for researchers to explore
our models.
- Abstract(参考訳): テキストから感情を特定することは、現実世界のさまざまなタスクにとって重要です。
感情分類のための最大のコーパスは、読者が58kのメッセージにラベル付けしたgoemotionsと、ライターがラベル付けしたメッセージが33mあるventだ。
ベンチマークを設計し、いくつかの特徴空間と学習アルゴリズムを評価する。その中には、以前のGoEmotionsの強力なベースラインを上回ったBERT上の2つのシンプルな新しいモデルが含まれる。
また,人間の参加者による実験を通じて,著者の感情表現方法と読み手の認識方法の違いを分析した。
著者が表現する感情は,読者が知覚する感情よりも識別が難しいことが示唆された。
研究者がモデルを探索するための公開Webインターフェースを共有しています。
関連論文リスト
- Exploring speech style spaces with language models: Emotional TTS without emotion labels [8.288443063900825]
本研究では,感情ラベルやテキストプロンプトを必要とせず,テキスト認識を利用して感情的スタイルを習得する手法を提案する。
E-TTSの2段階フレームワークであるTEMOTTSについて述べる。
論文 参考訳(メタデータ) (2024-05-18T23:21:39Z) - Emotion Rendering for Conversational Speech Synthesis with Heterogeneous
Graph-Based Context Modeling [50.99252242917458]
会話音声合成(CSS)は,会話環境の中で適切な韻律と感情のインフレクションで発話を正確に表現することを目的としている。
データ不足の問題に対処するため、私たちはカテゴリと強度の点で感情的なラベルを慎重に作成します。
我々のモデルは感情の理解と表現においてベースラインモデルよりも優れています。
論文 参考訳(メタデータ) (2023-12-19T08:47:50Z) - Seeking Subjectivity in Visual Emotion Distribution Learning [93.96205258496697]
視覚感情分析(VEA)は、人々の感情を異なる視覚刺激に向けて予測することを目的としている。
既存の手法では、集団投票プロセスにおいて固有の主観性を無視して、統合されたネットワークにおける視覚的感情分布を予測することが多い。
視覚的感情分布の主観性を調べるために,新しいテキストサブジェクティビティ評価ネットワーク(SAMNet)を提案する。
論文 参考訳(メタデータ) (2022-07-25T02:20:03Z) - Emotion Recognition from Multiple Modalities: Fundamentals and
Methodologies [106.62835060095532]
マルチモーダル感情認識(MER)のいくつかの重要な側面について論じる。
まず、広く使われている感情表現モデルと感情モダリティの簡単な紹介から始める。
次に、既存の感情アノテーション戦略とそれに対応する計算タスクを要約する。
最後に,実世界のアプリケーションについて概説し,今後の方向性について論じる。
論文 参考訳(メタデータ) (2021-08-18T21:55:20Z) - Emotion Recognition under Consideration of the Emotion Component Process
Model [9.595357496779394]
我々はScherer (2005) による感情成分プロセスモデル (CPM) を用いて感情コミュニケーションを説明する。
CPMは、感情は、出来事、すなわち主観的感情、認知的評価、表現、生理的身体反応、動機的行動傾向に対する様々なサブコンポーネントの協調過程であると述べている。
Twitter上での感情は、主に出来事の説明や主観的な感情の報告によって表現されているのに対し、文献では、著者はキャラクターが何をしているかを記述し、解釈を読者に任せることを好む。
論文 参考訳(メタデータ) (2021-07-27T15:53:25Z) - A Circular-Structured Representation for Visual Emotion Distribution
Learning [82.89776298753661]
視覚的感情分布学習に先立つ知識を活用するために,身近な円形構造表現を提案する。
具体的には、まず感情圏を構築し、その内にある感情状態を統一する。
提案した感情圏では、各感情分布は3つの属性で定義される感情ベクトルで表される。
論文 参考訳(メタデータ) (2021-06-23T14:53:27Z) - EmoDNN: Understanding emotions from short texts through a deep neural
network ensemble [2.459874436804819]
本稿では,短い内容から潜伏した個々の側面を推定する枠組みを提案する。
また,テキストコンテキストから感情を抽出する動的ドロップアウト共振器を備えた新しいアンサンブル分類器を提案する。
提案モデルでは,ノイズのある内容から感情を認識する上で,高い性能を実現することができる。
論文 参考訳(メタデータ) (2021-06-03T09:17:34Z) - Enhancing Cognitive Models of Emotions with Representation Learning [58.2386408470585]
本稿では,きめ細かな感情の埋め込み表現を生成するための,新しいディープラーニングフレームワークを提案する。
本フレームワークは,コンテキスト型埋め込みエンコーダとマルチヘッド探索モデルを統合する。
本モデルは共感対話データセット上で評価され,32種類の感情を分類する最新結果を示す。
論文 参考訳(メタデータ) (2021-04-20T16:55:15Z) - SpanEmo: Casting Multi-label Emotion Classification as Span-prediction [15.41237087996244]
マルチラベル感情分類をスパンプレディションとした新しいモデル「SpanEmo」を提案する。
入力文中の複数の共存感情をモデル化することに焦点を当てた損失関数を導入する。
SemEval2018マルチラベル感情データを3つの言語セットで実験した結果,本手法の有効性が示された。
論文 参考訳(メタデータ) (2021-01-25T12:11:04Z) - Modality-Transferable Emotion Embeddings for Low-Resource Multimodal
Emotion Recognition [55.44502358463217]
本稿では、上記の問題に対処するため、感情を埋め込んだモダリティ変換可能なモデルを提案する。
我々のモデルは感情カテゴリーのほとんどで最先端のパフォーマンスを達成する。
私たちのモデルは、目に見えない感情に対するゼロショットと少数ショットのシナリオにおいて、既存のベースラインよりも優れています。
論文 参考訳(メタデータ) (2020-09-21T06:10:39Z) - PO-EMO: Conceptualization, Annotation, and Modeling of Aesthetic
Emotions in German and English Poetry [26.172030802168752]
我々は、詩の中の感情を、文章で表現されるものや著者が意図するものよりも、読者に誘惑されるものとして考える。
我々は,読者の審美的評価を予測可能な審美感情の集合を概念化し,各行に複数ラベルの注釈を付けることで,その文脈内での混合感情を捉えることができる。
論文 参考訳(メタデータ) (2020-03-17T13:54:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。