Towards high-accuracy deep learning inference of compressible turbulent
flows over aerofoils
- URL: http://arxiv.org/abs/2109.02183v1
- Date: Sun, 5 Sep 2021 23:23:39 GMT
- Title: Towards high-accuracy deep learning inference of compressible turbulent
flows over aerofoils
- Authors: Li-Wei Chen and Nils Thuerey
- Abstract summary: The present study investigates the accurate inference of Navier-Stokes solutions for compressible flow over aerofoils in two dimensions with a deep neural network.
Our approach yields networks that learn to generate precise flow fields for varying body-fitted, structured grids.
The proposed deep learning method significantly speeds up the predictions of flow fields and shows promise for enabling fast aerodynamic designs.
- Score: 26.432914066756897
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The present study investigates the accurate inference of Reynolds-averaged
Navier-Stokes solutions for the compressible flow over aerofoils in two
dimensions with a deep neural network. Our approach yields networks that learn
to generate precise flow fields for varying body-fitted, structured grids by
providing them with an encoding of the corresponding mapping to a canonical
space for the solutions. We apply the deep neural network model to a benchmark
case of incompressible flow at randomly given angles of attack and Reynolds
numbers and achieve an improvement of more than an order of magnitude compared
to previous work. Further, for transonic flow cases, the deep neural network
model accurately predicts complex flow behaviour at high Reynolds numbers, such
as shock wave/boundary layer interaction, and quantitative distributions like
pressure coefficient, skin friction coefficient as well as wake total pressure
profiles downstream of aerofoils. The proposed deep learning method
significantly speeds up the predictions of flow fields and shows promise for
enabling fast aerodynamic designs.
Related papers
- WiNet: Wavelet-based Incremental Learning for Efficient Medical Image Registration [68.25711405944239]
Deep image registration has demonstrated exceptional accuracy and fast inference.
Recent advances have adopted either multiple cascades or pyramid architectures to estimate dense deformation fields in a coarse-to-fine manner.
We introduce a model-driven WiNet that incrementally estimates scale-wise wavelet coefficients for the displacement/velocity field across various scales.
arXiv Detail & Related papers (2024-07-18T11:51:01Z) - Fluid Simulation on Neural Flow Maps [23.5602305386658]
We introduce Neural Flow Maps, a novel simulation method bridging the emerging paradigm of implicit neural representations with fluid simulation based on the theory of flow maps.
We demonstrate the efficacy of our neural fluid simulation in a variety of challenging simulation scenarios, including leapfrogging vortices, colliding vortices, vortex reconnections, as well as vortex generation from moving obstacles and density differences.
arXiv Detail & Related papers (2023-12-22T12:13:19Z) - Tensor network reduced order models for wall-bounded flows [0.0]
We introduce a widely applicable tensor network-based framework for developing reduced order models.
We consider the incompressible Navier-Stokes equations and the lid-driven cavity in two spatial dimensions.
arXiv Detail & Related papers (2023-03-06T10:33:00Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
A new hybrid predictive Reduced Order Model (ROM) is proposed to solve reacting flow problems.
The number of degrees of freedom is reduced from thousands of temporal points to a few POD modes with their corresponding temporal coefficients.
Two different deep learning architectures have been tested to predict the temporal coefficients.
arXiv Detail & Related papers (2023-01-24T08:39:20Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Estimating permeability of 3D micro-CT images by physics-informed CNNs
based on DNS [1.6274397329511197]
This paper presents a novel methodology for permeability prediction from micro-CT scans of geological rock samples.
The training data set for CNNs dedicated to permeability prediction consists of permeability labels that are typically generated by classical lattice Boltzmann methods (LBM)
We instead perform direct numerical simulation (DNS) by solving the stationary Stokes equation in an efficient and distributed-parallel manner.
arXiv Detail & Related papers (2021-09-04T08:43:19Z) - Embedded training of neural-network sub-grid-scale turbulence models [0.0]
The weights of a deep neural network model are optimized in conjunction with the governing flow equations to provide a model for sub-grid-scale stresses.
The training is by a gradient descent method, which uses the adjoint Navier-Stokes equations to provide the end-to-end sensitivities of the model weights to the velocity fields.
arXiv Detail & Related papers (2021-05-03T17:28:39Z) - A Convergence Theory Towards Practical Over-parameterized Deep Neural
Networks [56.084798078072396]
We take a step towards closing the gap between theory and practice by significantly improving the known theoretical bounds on both the network width and the convergence time.
We show that convergence to a global minimum is guaranteed for networks with quadratic widths in the sample size and linear in their depth at a time logarithmic in both.
Our analysis and convergence bounds are derived via the construction of a surrogate network with fixed activation patterns that can be transformed at any time to an equivalent ReLU network of a reasonable size.
arXiv Detail & Related papers (2021-01-12T00:40:45Z) - Predicting the flow field in a U-bend with deep neural networks [0.0]
This paper describes a study based on computational fluid dynamics (CFD) and deep neural networks that focusing on predicting the flow field in differently distorted U-shaped pipes.
The main motivation of this work was to get an insight about the justification of the deep learning paradigm in hydrodynamic hull optimisation processes.
arXiv Detail & Related papers (2020-10-01T09:03:02Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.