Dephasing of Exchange-coupled Spins in Quantum Dots for Quantum
Computing
- URL: http://arxiv.org/abs/2109.02261v1
- Date: Mon, 6 Sep 2021 06:38:20 GMT
- Title: Dephasing of Exchange-coupled Spins in Quantum Dots for Quantum
Computing
- Authors: Peihao Huang
- Abstract summary: A spin qubit in semiconductor quantum dots holds promise for quantum information processing.
We report progress on spin dephasing of two exchange-coupled spins in a double quantum dot.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A spin qubit in semiconductor quantum dots holds promise for quantum
information processing for scalability and long coherence time. An important
semiconductor qubit system is a double quantum dot trapping two electrons or
holes, whose spin states encode either a singlet-triplet qubit or two
single-spin qubits coupled by exchange interaction. In this article, we report
progress on spin dephasing of two exchange-coupled spins in a double quantum
dot. We first discuss the schemes of two-qubit gates and qubit encodings in
gate-defined quantum dots or donor atoms based on the exchange interaction.
Then, we report the progress on spin dephasing of a singlet-triplet qubit or a
two-qubit gate. The methods of suppressing spin dephasing are further
discussed. The understanding of spin dephasing may provide insights into the
realization of high-fidelity quantum gates for spin-based quantum computing.
Related papers
- Hole Flying Qubits in Quantum Dot Arrays [1.0446041735532203]
We show that electric field manipulation allows dynamical control of the SOI, enabling simultaneously the implementation of quantum gates during the transfer.
We employ dynamical decoupling schemes to focus and preserve the spin state, leading to higher transfer fidelity.
arXiv Detail & Related papers (2023-12-07T19:00:02Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Oblivious Quantum Computation and Delegated Multiparty Quantum
Computation [61.12008553173672]
We propose a new concept, oblivious computation quantum computation, where secrecy of the input qubits and the program to identify the quantum gates are required.
Exploiting quantum teleportation, we propose a two-server protocol for this task.
Also, we discuss delegated multiparty quantum computation, in which, several users ask multiparty quantum computation to server(s) only using classical communications.
arXiv Detail & Related papers (2022-11-02T09:01:33Z) - A shuttling-based two-qubit logic gate for linking distant silicon
quantum processors [0.0]
Control of entanglement between qubits at distant quantum processors using a two-qubit gate is an essential function of a scalable, modular implementation of quantum computation.
Here we demonstrate a two-qubit gate between spin qubits via coherent spin shuttling, a key technology for linking distant silicon quantum processors.
arXiv Detail & Related papers (2022-02-03T01:04:48Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
arXiv Detail & Related papers (2020-12-22T19:00:04Z) - Universal quantum computation and quantum error correction with
ultracold atomic mixtures [47.187609203210705]
We propose a mixture of two ultracold atomic species as a platform for universal quantum computation with long-range entangling gates.
One atomic species realizes localized collective spins of tunable length, which form the fundamental unit of information.
We discuss a finite-dimensional version of the Gottesman-Kitaev-Preskill code to protect quantum information encoded in the collective spins.
arXiv Detail & Related papers (2020-10-29T20:17:14Z) - Adiabatic quantum state transfer in a semiconductor quantum-dot spin
chain [0.0]
We present evidence of adiabatic quantum-state transfer in semiconductor quantum-dot electron spins.
Based on simulations, we estimate that the probability to correctly transfer single-spin eigenstates and two-spin singlet states can exceed 0.95.
arXiv Detail & Related papers (2020-07-08T03:01:27Z) - Floquet-Enhanced Spin Swaps [0.0]
We harness interactions and disorder between qubits to improve a swap operation for spin eigenstates in semiconductor gate-defined quantum-dot spins.
Our results show how interactions and disorder in multi-qubit systems can stabilize non-trivial quantum operations.
arXiv Detail & Related papers (2020-06-19T01:09:21Z) - Programmable two-qubit gates in capacitively coupled flopping-mode spin
qubits [0.0]
We show a versatile set of quantum gates between adjacent spin qubits defined in semiconductor quantum dots.
We calculate the estimated infidelity of different two-qubit gates in the most immediate possible experimental realizations.
arXiv Detail & Related papers (2020-03-04T15:37:21Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.