Programmable two-qubit gates in capacitively coupled flopping-mode spin
qubits
- URL: http://arxiv.org/abs/2003.02137v3
- Date: Wed, 27 May 2020 11:02:30 GMT
- Title: Programmable two-qubit gates in capacitively coupled flopping-mode spin
qubits
- Authors: Jorge Cayao, M\'onica Benito, Guido Burkard
- Abstract summary: We show a versatile set of quantum gates between adjacent spin qubits defined in semiconductor quantum dots.
We calculate the estimated infidelity of different two-qubit gates in the most immediate possible experimental realizations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent achievements in the field of gate defined semiconductor quantum dots
reinforce the concept of a spin-based quantum computer consisting of nodes of
locally connected qubits which communicate with each other via superconducting
circuit resonator photons. In this work we theoretically demonstrate a
versatile set of quantum gates between adjacent spin qubits defined in
semiconductor quantum dots situated within the same node of such a spin-based
quantum computer. The electric dipole acquired by the spin of an electron that
moves across a double quantum dot potential in a magnetic field gradient has
enabled strong coupling to resonator photons and low-power spin control. Here
we show that this flopping-mode spin qubit also provides with the tunability to
program multiple two-qubit gates. Since the capacitive coupling between these
qubits brings about additional dephasing, we calculate the estimated infidelity
of different two-qubit gates in the most immediate possible experimental
realizations.
Related papers
- Passive photonic CZ gate with two-level emitters in chiral multi-mode waveguide QED [41.94295877935867]
We design a passive conditional gate between co-propagating photons using an array of only two-level emitters.
The key resource is to harness the effective photon-photon interaction induced by the chiral coupling of the emitter array to two waveguide modes.
We show how to harness this non-linear phase shift to engineer a conditional, deterministic photonic gate in different qubit encodings.
arXiv Detail & Related papers (2024-07-08T18:00:25Z) - Impact of electrostatic crosstalk on spin qubits in dense CMOS quantum
dot arrays [0.2529650288460727]
Current CMOS spin qubit processors consist of dense gate arrays to define the quantum dots.
Small but sizeable spin-orbit interactions can transfer this electrostatic crosstalk to the spin g-factors.
By studying the Stark shift from tens of spin qubits measured in nine different CMOS devices, we developed a theoretical frawework that explains how electric fields couple to the spin of the electrons.
arXiv Detail & Related papers (2023-09-04T22:44:24Z) - Cavity-mediated entanglement of parametrically driven spin qubits via
sidebands [0.0]
We consider a pair of quantum dot-based spin qubits that interact via microwave photons in a superconducting cavity, and that are also parametrically driven by separate external electric fields.
We show that the sidebands generated via the driving fields enable highly tunable qubit-qubit entanglement using only ac control.
arXiv Detail & Related papers (2023-07-12T10:35:43Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - An elongated quantum dot as a distributed charge sensor [0.0]
We study a metal-oxide-semiconductor (MOS) device where two quantum dot arrays are separated by an elongated quantum dot.
We operate the dot as a single electron box to achieve charge sensing of remote quantum dots in each array, separated by a distance of 510 nm.
arXiv Detail & Related papers (2023-01-04T14:50:36Z) - On-Demand Directional Microwave Photon Emission Using Waveguide Quantum
Electrodynamics [38.42250061908039]
We demonstrate high-fidelity, on-demand, directional, microwave photon emission.
We do this using an artificial molecule comprising two superconducting qubits strongly coupled to a bidirectional waveguide.
This circuit will also be capable of photon absorption, making it suitable for building interconnects within quantum networks.
arXiv Detail & Related papers (2022-03-02T21:45:00Z) - Dephasing of Exchange-coupled Spins in Quantum Dots for Quantum
Computing [0.0]
A spin qubit in semiconductor quantum dots holds promise for quantum information processing.
We report progress on spin dephasing of two exchange-coupled spins in a double quantum dot.
arXiv Detail & Related papers (2021-09-06T06:38:20Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Nonadiabatic geometric quantum computation with optimal control on
superconducting circuits [7.703593898562321]
We propose a nonadiabatic geometric quantum computation scheme on superconducting circuits.
Our scheme provides a promising step towards fault-tolerant solid-state quantum computation.
arXiv Detail & Related papers (2020-04-21T08:34:08Z) - Generating Spatially Entangled Itinerant Photons with Waveguide Quantum
Electrodynamics [43.53795072498062]
In this work, we demonstrate the deterministic generation of such photons using superconducting transmon qubits that are directly coupled to a waveguide.
We generate two-photon N00N states and show that the state and spatial entanglement of the emitted photons are tunable via the qubit frequencies.
arXiv Detail & Related papers (2020-03-16T16:03:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.