Multipartite entanglement of the topologically ordered state in a
perturbed toric code
- URL: http://arxiv.org/abs/2109.03315v1
- Date: Tue, 7 Sep 2021 20:20:21 GMT
- Title: Multipartite entanglement of the topologically ordered state in a
perturbed toric code
- Authors: Yu-Ran Zhang, Yu Zeng, Tao Liu, Heng Fan, J. Q. You, Franco Nori
- Abstract summary: We demonstrate that multipartite entanglement, witnessed by the quantum Fisher information (QFI), can characterize topological quantum phase transitions in the spin-$frac12$ toric code model.
Our results provide insights to topological phases, which are robust against external disturbances, and are candidates for topologically protected quantum computation.
- Score: 18.589873789289562
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We demonstrate that multipartite entanglement, witnessed by the quantum
Fisher information (QFI), can characterize topological quantum phase
transitions in the spin-$\frac{1}{2}$ toric code model on a square lattice with
external fields. We show that the QFI density of the ground state can be
written in terms of the expectation values of gauge-invariant Wilson loops for
different sizes of square regions and identify $\mathbb{Z}_2$ topological order
by its scaling behavior. Furthermore, we use this multipartite entanglement
witness to investigate thermalization and disorder-assisted stabilization of
topological order after a quantum quench. Moreover, with an upper bound of the
QFI, we demonstrate the absence of finite-temperature topological order in the
2D toric code model in the thermodynamic limit. Our results provide insights to
topological phases, which are robust against external disturbances, and are
candidates for topologically protected quantum computation.
Related papers
- A New Genuine Multipartite Entanglement Measure: from Qubits to Multiboundary Wormholes [0.0]
We introduce the Latent Entropy (L-entropy) as a novel measure to characterize the genuine multipartite entanglement in quantum systems.
We demonstrate that the measure functions as a multipartite pure state entanglement monotone and briefly address its extension to mixed multipartite states.
In particular, we show that for $n geq 5$, random states approximate 2-uniform states with maximal multipartite entanglement.
arXiv Detail & Related papers (2024-11-18T19:00:03Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Topological squashed entanglement: nonlocal order parameter for
one-dimensional topological superconductors [0.0]
We show the end-to-end, long-distance, bipartite squashed entanglement between the edges of a many-body system.
For the Kitaev chain in the entire topological phase, the edge squashed entanglement is quantized to log(2)/2, half the maximal Bell-state entanglement, and vanishes in the trivial phase.
Such topological squashed entanglement exhibits the correct scaling at the quantum phase transition, is stable in the presence of interactions, and is robust against disorder and local perturbations.
arXiv Detail & Related papers (2022-01-28T10:57:51Z) - Quantum Simulation of Chiral Phase Transitions [62.997667081978825]
We construct a quantum simulation for the $(+1)$ dimensional NJL model at finite temperature and finite chemical potential.
We observe consistency among digital quantum simulation, exact diagonalization, and analytical solution, indicating further applications of quantum computing in simulating QCD thermodynamics.
arXiv Detail & Related papers (2021-12-07T19:04:20Z) - Circuit QED simulator of two-dimensional Su-Schrieffer-Hegger model:
magnetic field induced topological phase transition in high-order topological
insulators [8.108482924894043]
High-order topological insulator (HOTI) occupies an important position in topological band theory.
Recently, it has been predicted that external magnetic field can introduce rich physics into 2D HOTIs.
Here we investigate the influence of continuously varying magnetic field on 2D Su-Schriffer-Heeger lattice.
arXiv Detail & Related papers (2021-09-27T10:05:03Z) - Probing Topological Spin Liquids on a Programmable Quantum Simulator [40.96261204117952]
We use a 219-atom programmable quantum simulator to probe quantum spin liquid states.
In our approach, arrays of atoms are placed on the links of a kagome lattice and evolution under Rydberg blockade creates frustrated quantum states.
The onset of a quantum spin liquid phase of the paradigmatic toric code type is detected by evaluating topological string operators.
arXiv Detail & Related papers (2021-04-09T00:18:12Z) - Prediction of Toric Code Topological Order from Rydberg Blockade [0.0]
We find a topological quantum liquid (TQL) as evidenced by multiple measures.
We show how these can be measured experimentally using a dynamic protocol.
We discuss the implications for exploring fault-tolerant quantum memories.
arXiv Detail & Related papers (2020-11-24T19:00:05Z) - Quantum critical phase transition between two topologically-ordered
phases in the Ising toric code bilayer [0.0]
We show that two toric code layers on the square lattice coupled by an Ising interaction display two distinct phases with intrinsic topological order.
The second-order quantum phase transition between the weakly-coupled $mathbbZtimesmathbbZ$ and the strongly-coupled $mathbbZ$ can be described by the condensation of bosonic quasiparticles from both sides.
arXiv Detail & Related papers (2020-10-12T19:16:36Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.