Quantum Fourier transform spectroscopy of biexciton
- URL: http://arxiv.org/abs/2109.03715v2
- Date: Wed, 3 Nov 2021 16:25:51 GMT
- Title: Quantum Fourier transform spectroscopy of biexciton
- Authors: Hiroya Seki, Kensuke Miyajima and Ryosuke Shimizu
- Abstract summary: We report the first experimental demonstration of two-photon quantum interference of photon pairs emitted via biexcitons in the semiconductor CuCl.
We reconstruct the intensity spectrum of the biexciton luminescence in the two-photon sum or difference frequency.
We discuss the connection between the reconstructed spectra and exciton states in CuCl as well as the capability of quantum interferometry in solid-state spectroscopy.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fourier transform spectroscopy with classical interferometry corresponds to
the measurement of a single-photon intensity spectrum from the viewpoint of the
particle nature of light. In contrast, the Fourier transform of two-photon
quantum interference patterns provides the intensity spectrum of the two
photons as a function of the sum or difference frequency of the constituent
photons. This unique feature of quantum interferometric spectroscopy offers a
different type of spectral information from the classical measurement and may
prove useful for nonlinear spectroscopy with two-photon emission. Here, we
report the first experimental demonstration of two-photon quantum interference
of photon pairs emitted via biexcitons in the semiconductor CuCl. Besides
applying Fourier transform to quantum interference patterns, we reconstruct the
intensity spectrum of the biexciton luminescence in the two-photon sum or
difference frequency. We discuss the connection between the reconstructed
spectra and exciton states in CuCl as well as the capability of quantum
interferometry in solid-state spectroscopy.
Related papers
- Complete spectral characterization of biphotons by simultaneously
determining its frequency sum and difference in a single quantum
interferometer [0.0]
We propose a novel quantum interferometer in which the NOON state interferometer (NOONI) is combined with the Hong-Ou-Mandel interferometer (HOMI)
It can simultaneously obtain the spectral correlation information of biphotons in both frequency sum and difference.
arXiv Detail & Related papers (2023-05-23T06:40:10Z) - Single photon optical bistability [55.2480439325792]
We investigate the bistability in a small Fabry-Perot interferometer (FPI) with the optical wavelength size cavity, the nonlinear Kerr medium and only a few photons, on average, excited by the external quantum field.
Multiple stationary states of the FPI cavity field with different spectra are possible at realistic conditions, for example, in the FPI with the photonic crystal cavity and the semiconductor-doped glass nonlinear medium.
arXiv Detail & Related papers (2023-04-15T10:44:51Z) - Quantum fluctuations in the small Fabry-Perot interferometer [77.34726150561087]
We study the small, of the size of the order of the wavelength, interferometer with the main mode excited by a quantum field from a nano-LED or a laser.
We find the field and the photon number fluctuation spectra inside and outside the interferometer.
Results help the study, design, manufacture, and use small elements of quantum optical integrated circuits.
arXiv Detail & Related papers (2022-12-27T10:02:25Z) - Tailoring photon statistics with an atom-based two-photon interferometer [0.0]
We actively control the quantum phase between the transmitted and incoherently scattered two-photon component.
We observe interference fringes in the normalized photon coincidence rate, varying from antibunching to bunching.
Our results lend themselves to the development of novel quantum light sources.
arXiv Detail & Related papers (2022-12-19T16:24:54Z) - Quantum interferometric two-photon excitation spectroscopy [7.708943730059219]
We present an approach for quantum interferometric two-photon excitation spectroscopy.
Our proposed protocol overcomes the difficulties of engineering two-photon joint spectral intensities and fine-tuned absorption-frequency selection.
Results may significantly facilitate the use of quantum interferometric spectroscopy for extracting the information about the electronic structure of the two-photon excited-state manifold of atoms or molecules.
arXiv Detail & Related papers (2021-11-23T15:44:08Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Phonon dephasing and spectral diffusion of quantum emitters in hexagonal
Boron Nitride [52.915502553459724]
Quantum emitters in hexagonal boron nitride (hBN) are emerging as bright and robust sources of single photons for applications in quantum optics.
We study phonon dephasing and spectral diffusion of quantum emitters in hBN via resonant excitation spectroscopy at cryogenic temperatures.
arXiv Detail & Related papers (2021-05-25T05:56:18Z) - Achieving two-dimensional optical spectroscopy with temporal and
spectral resolution using quantum entangled three photons [0.0]
Time-resolved entangled photon spectroscopy with monochromatic pumping is investigated.
The signal is not subject to Fourier limitations on the joint temporal and spectral resolution.
It is expected to be useful for investigating complex molecular systems in which multiple electronic states are present within a narrow energy range.
arXiv Detail & Related papers (2021-03-08T03:56:10Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Unraveling two-photon entanglement via the squeezing spectrum of light
traveling through nanofiber-coupled atoms [0.0]
We observe a weak guided light field transmitted through an ensemble of atoms and an optical nanofiber.
From the measured squeezing spectrum we gain access to the phase and amplitude of the energy-time entangled part of the two-photon wavefunction.
Our characterization of the entangled two-photon component constitutes a diagnostic tool for quantum optics devices.
arXiv Detail & Related papers (2020-10-19T12:57:50Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.