Quantum-enhanced neural networks in the neural tangent kernel framework
- URL: http://arxiv.org/abs/2109.03786v3
- Date: Mon, 11 Dec 2023 18:40:57 GMT
- Title: Quantum-enhanced neural networks in the neural tangent kernel framework
- Authors: Kouhei Nakaji, Hiroyuki Tezuka, Naoki Yamamoto
- Abstract summary: We study a class of qcNN composed of a quantum data-encoder followed by a cNN.
In the NTK regime where the number nodes of the cNN becomes infinitely large, the output of the entire qcNN becomes a nonlinear function of the so-called projected quantum kernel.
- Score: 0.4394730767364254
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, quantum neural networks or quantum-classical neural networks (qcNN)
have been actively studied, as a possible alternative to the conventional
classical neural network (cNN), but their practical and
theoretically-guaranteed performance is still to be investigated. In contrast,
cNNs and especially deep cNNs, have acquired several solid theoretical basis;
one of those basis is the neural tangent kernel (NTK) theory, which can
successfully explain the mechanism of various desirable properties of cNNs,
particularly the global convergence in the training process. In this paper, we
study a class of qcNN composed of a quantum data-encoder followed by a cNN. The
quantum part is randomly initialized according to unitary 2-designs, which is
an effective feature extraction process for quantum states, and the classical
part is also randomly initialized according to Gaussian distributions; then, in
the NTK regime where the number of nodes of the cNN becomes infinitely large,
the output of the entire qcNN becomes a nonlinear function of the so-called
projected quantum kernel. That is, the NTK theory is used to construct an
effective quantum kernel, which is in general nontrivial to design. Moreover,
NTK defined for the qcNN is identical to the covariance matrix of a Gaussian
process, which allows us to analytically study the learning process. These
properties are investigated in thorough numerical experiments; particularly, we
demonstrate that the qcNN shows a clear advantage over fully classical NNs and
qNNs for the problem of learning the quantum data-generating process.
Related papers
- Analyzing Convergence in Quantum Neural Networks: Deviations from Neural
Tangent Kernels [20.53302002578558]
A quantum neural network (QNN) is a parameterized mapping efficiently implementable on near-term Noisy Intermediate-Scale Quantum (NISQ) computers.
Despite the existing empirical and theoretical investigations, the convergence of QNN training is not fully understood.
arXiv Detail & Related papers (2023-03-26T22:58:06Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Reservoir Computing via Quantum Recurrent Neural Networks [0.5999777817331317]
Existing VQC or QNN-based methods require significant computational resources to perform gradient-based optimization of quantum circuit parameters.
In this work, we approach sequential modeling by applying a reservoir computing (RC) framework to quantum recurrent neural networks (QRNN-RC)
Our numerical simulations show that the QRNN-RC can reach results comparable to fully trained QRNN models for several function approximation and time series tasks.
arXiv Detail & Related papers (2022-11-04T17:30:46Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
The study on NTK has been devoted to typical neural network architectures, but is incomplete for neural networks with Hadamard products (NNs-Hp)
In this work, we derive the finite-width-K formulation for a special class of NNs-Hp, i.e., neural networks.
We prove their equivalence to the kernel regression predictor with the associated NTK, which expands the application scope of NTK.
arXiv Detail & Related papers (2022-09-16T06:36:06Z) - Quantum-inspired Complex Convolutional Neural Networks [17.65730040410185]
We improve the quantum-inspired neurons by exploiting the complex-valued weights which have richer representational capacity and better non-linearity.
We draw the models of quantum-inspired convolutional neural networks (QICNNs) capable of processing high-dimensional data.
The performance of classification accuracy of the five QICNNs are tested on the MNIST and CIFAR-10 datasets.
arXiv Detail & Related papers (2021-10-31T03:10:48Z) - QDCNN: Quantum Dilated Convolutional Neural Network [1.52292571922932]
We propose a novel hybrid quantum-classical algorithm called quantum dilated convolutional neural networks (QDCNNs)
Our method extends the concept of dilated convolution, which has been widely applied in modern deep learning algorithms, to the context of hybrid neural networks.
The proposed QDCNNs are able to capture larger context during the quantum convolution process while reducing the computational cost.
arXiv Detail & Related papers (2021-10-29T10:24:34Z) - The dilemma of quantum neural networks [63.82713636522488]
We show that quantum neural networks (QNNs) fail to provide any benefit over classical learning models.
QNNs suffer from the severely limited effective model capacity, which incurs poor generalization on real-world datasets.
These results force us to rethink the role of current QNNs and to design novel protocols for solving real-world problems with quantum advantages.
arXiv Detail & Related papers (2021-06-09T10:41:47Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Branching Quantum Convolutional Neural Networks [0.0]
Small-scale quantum computers are already showing potential gains in learning tasks on large quantum and very large classical data sets.
We present a generalization of QCNN, the branching quantum convolutional neural network, or bQCNN, with substantially higher expressibility.
arXiv Detail & Related papers (2020-12-28T19:00:03Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
Quantum Neural Networks (QNNs) have been proposed as generalizations of classical neural networks to achieve the quantum speed-up.
Serious bottlenecks exist for training QNNs due to the vanishing with gradient rate exponential to the input qubit number.
We show that QNNs with tree tensor and step controlled structures for the application of binary classification. Simulations show faster convergent rates and better accuracy compared to QNNs with random structures.
arXiv Detail & Related papers (2020-11-12T08:32:04Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.