Reservoir Computing via Quantum Recurrent Neural Networks
- URL: http://arxiv.org/abs/2211.02612v1
- Date: Fri, 4 Nov 2022 17:30:46 GMT
- Title: Reservoir Computing via Quantum Recurrent Neural Networks
- Authors: Samuel Yen-Chi Chen, Daniel Fry, Amol Deshmukh, Vladimir Rastunkov,
Charlee Stefanski
- Abstract summary: Existing VQC or QNN-based methods require significant computational resources to perform gradient-based optimization of quantum circuit parameters.
In this work, we approach sequential modeling by applying a reservoir computing (RC) framework to quantum recurrent neural networks (QRNN-RC)
Our numerical simulations show that the QRNN-RC can reach results comparable to fully trained QRNN models for several function approximation and time series tasks.
- Score: 0.5999777817331317
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent developments in quantum computing and machine learning have propelled
the interdisciplinary study of quantum machine learning. Sequential modeling is
an important task with high scientific and commercial value. Existing VQC or
QNN-based methods require significant computational resources to perform the
gradient-based optimization of a larger number of quantum circuit parameters.
The major drawback is that such quantum gradient calculation requires a large
amount of circuit evaluation, posing challenges in current near-term quantum
hardware and simulation software. In this work, we approach sequential modeling
by applying a reservoir computing (RC) framework to quantum recurrent neural
networks (QRNN-RC) that are based on classical RNN, LSTM and GRU. The main idea
to this RC approach is that the QRNN with randomly initialized weights is
treated as a dynamical system and only the final classical linear layer is
trained. Our numerical simulations show that the QRNN-RC can reach results
comparable to fully trained QRNN models for several function approximation and
time series prediction tasks. Since the QRNN training complexity is
significantly reduced, the proposed model trains notably faster. In this work
we also compare to corresponding classical RNN-based RC implementations and
show that the quantum version learns faster by requiring fewer training epochs
in most cases. Our results demonstrate a new possibility to utilize quantum
neural network for sequential modeling with greater quantum hardware
efficiency, an important design consideration for noisy intermediate-scale
quantum (NISQ) computers.
Related papers
- CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks [76.53016529061821]
Liquid Quantum Neural Network (LQNet) and Continuous Time Recurrent Quantum Neural Network (CTRQNet) developed.
LQNet and CTRQNet achieve accuracy increases as high as 40% on CIFAR 10 through binary classification.
arXiv Detail & Related papers (2024-08-28T00:56:03Z) - Efficient quantum recurrent reinforcement learning via quantum reservoir
computing [3.6881738506505988]
Quantum reinforcement learning (QRL) has emerged as a framework to solve sequential decision-making tasks.
This work presents a novel approach to address this challenge by constructing QRL agents utilizing QRNN-based quantum long short-term memory (QLSTM)
arXiv Detail & Related papers (2023-09-13T22:18:38Z) - Quantum Recurrent Neural Networks for Sequential Learning [11.133759363113867]
We propose a new kind of quantum recurrent neural network (QRNN) to find quantum advantageous applications in the near term.
Our QRNN is built by stacking the QRBs in a staggered way that can greatly reduce the algorithm's requirement with regard to the coherent time of quantum devices.
The numerical experiments show that our QRNN achieves much better performance in prediction (classification) accuracy against the classical RNN and state-of-the-art QNN models for sequential learning.
arXiv Detail & Related papers (2023-02-07T04:04:39Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
We show that conditions amenable to classical trainability via gradient descent coincide with those necessary for efficiently solving quantum linear systems.
We numerically demonstrate that the MNIST image dataset satisfies such conditions.
We provide empirical evidence for $O(log n)$ training of a convolutional neural network with pooling.
arXiv Detail & Related papers (2021-07-19T23:41:03Z) - A Quantum Convolutional Neural Network for Image Classification [7.745213180689952]
We propose a novel neural network model named Quantum Convolutional Neural Network (QCNN)
QCNN is based on implementable quantum circuits and has a similar structure as classical convolutional neural networks.
Numerical simulation results on the MNIST dataset demonstrate the effectiveness of our model.
arXiv Detail & Related papers (2021-07-08T06:47:34Z) - Branching Quantum Convolutional Neural Networks [0.0]
Small-scale quantum computers are already showing potential gains in learning tasks on large quantum and very large classical data sets.
We present a generalization of QCNN, the branching quantum convolutional neural network, or bQCNN, with substantially higher expressibility.
arXiv Detail & Related papers (2020-12-28T19:00:03Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
Quantum Neural Networks (QNNs) have been proposed as generalizations of classical neural networks to achieve the quantum speed-up.
Serious bottlenecks exist for training QNNs due to the vanishing with gradient rate exponential to the input qubit number.
We show that QNNs with tree tensor and step controlled structures for the application of binary classification. Simulations show faster convergent rates and better accuracy compared to QNNs with random structures.
arXiv Detail & Related papers (2020-11-12T08:32:04Z) - Decentralizing Feature Extraction with Quantum Convolutional Neural
Network for Automatic Speech Recognition [101.69873988328808]
We build upon a quantum convolutional neural network (QCNN) composed of a quantum circuit encoder for feature extraction.
An input speech is first up-streamed to a quantum computing server to extract Mel-spectrogram.
The corresponding convolutional features are encoded using a quantum circuit algorithm with random parameters.
The encoded features are then down-streamed to the local RNN model for the final recognition.
arXiv Detail & Related papers (2020-10-26T03:36:01Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z) - Recurrent Quantum Neural Networks [7.6146285961466]
Recurrent neural networks are the foundation of many sequence-to-sequence models in machine learning.
We construct a quantum recurrent neural network (QRNN) with demonstrable performance on non-trivial tasks.
We evaluate the QRNN on MNIST classification, both by feeding the QRNN each image pixel-by-pixel; and by utilising modern data augmentation as preprocessing step.
arXiv Detail & Related papers (2020-06-25T17:59:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.