論文の概要: Double Descent Meets Out-of-Distribution Detection: Theoretical Insights and Empirical Analysis on the role of model complexity
- arxiv url: http://arxiv.org/abs/2411.02184v1
- Date: Mon, 04 Nov 2024 15:39:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:51:53.292809
- Title: Double Descent Meets Out-of-Distribution Detection: Theoretical Insights and Empirical Analysis on the role of model complexity
- Title(参考訳): Double Descent, Out-of-Distribution Detection:理論的考察とモデル複雑度の役割に関する実証分析
- Authors: Mouïn Ben Ammar, David Brellmann, Arturo Mendoza, Antoine Manzanera, Gianni Franchi,
- Abstract要約: トレーニングとOODサンプルの両方において,分類器の信頼性を評価するためのOODリスク指標を提案する。
パラメータ数がサンプル数に等しい場合,OODリスクは無限のピークを示す。
- 参考スコア(独自算出の注目度): 2.206582444513284
- License:
- Abstract: While overparameterization is known to benefit generalization, its impact on Out-Of-Distribution (OOD) detection is less understood. This paper investigates the influence of model complexity in OOD detection. We propose an expected OOD risk metric to evaluate classifiers confidence on both training and OOD samples. Leveraging Random Matrix Theory, we derive bounds for the expected OOD risk of binary least-squares classifiers applied to Gaussian data. We show that the OOD risk depicts an infinite peak, when the number of parameters is equal to the number of samples, which we associate with the double descent phenomenon. Our experimental study on different OOD detection methods across multiple neural architectures extends our theoretical insights and highlights a double descent curve. Our observations suggest that overparameterization does not necessarily lead to better OOD detection. Using the Neural Collapse framework, we provide insights to better understand this behavior. To facilitate reproducibility, our code will be made publicly available upon publication.
- Abstract(参考訳): 過パラメータ化は一般化の恩恵を受けることが知られているが、OF-Distribution(OOD)検出への影響は理解されていない。
本稿では,OOD検出におけるモデル複雑度の影響について検討する。
トレーニングとOODサンプルの両方において,分類器の信頼性を評価するためのOODリスク指標を提案する。
ランダム行列理論を応用して、ガウスデータに適用された二項最小二乗分類器のOODリスクの限界を導出する。
OODリスクは、パラメータの数がサンプル数と等しい場合、無限のピークを描いており、二重降下現象と関連していることを示す。
複数のニューラルネットワークにまたがる様々なOOD検出手法に関する実験的研究により、理論的知見が拡張され、二重降下曲線が強調される。
以上の結果から,過パラメータ化がOOD検出の改善につながるとは限らないことが示唆された。
Neural Collapseフレームワークを使用して、この振る舞いをよりよく理解するための洞察を提供する。
再現性を促進するため、当社のコードは公開時に公開されます。
関連論文リスト
- The Best of Both Worlds: On the Dilemma of Out-of-distribution Detection [75.65876949930258]
アウト・オブ・ディストリビューション(OOD)検出はモデル信頼性に不可欠である。
我々は,OODの一般化能力を秘かに犠牲にすることで,最先端手法のOOD検出性能が向上することを示す。
論文 参考訳(メタデータ) (2024-10-12T07:02:04Z) - Rethinking Out-of-Distribution Detection on Imbalanced Data Distribution [38.844580833635725]
アーキテクチャ設計におけるバイアスを緩和し,不均衡なOOD検出器を増強する訓練時間正規化手法を提案する。
提案手法は,CIFAR10-LT,CIFAR100-LT,ImageNet-LTのベンチマークに対して一貫した改良を行う。
論文 参考訳(メタデータ) (2024-07-23T12:28:59Z) - Optimizing OOD Detection in Molecular Graphs: A Novel Approach with Diffusion Models [71.39421638547164]
本稿では,入力分子と再構成グラフの類似性を比較する補助拡散モデルに基づくフレームワークを用いてOOD分子を検出することを提案する。
IDトレーニングサンプルの再構成に向けた生成バイアスのため、OOD分子の類似度スコアは検出を容易にするためにはるかに低い。
本研究は,PGR-MOOD(PGR-MOOD)とよばれる分子OOD検出のためのプロトタイプグラフ再構成のアプローチを開拓し,3つのイノベーションを生かした。
論文 参考訳(メタデータ) (2024-04-24T03:25:53Z) - Detecting Out-of-Distribution Through the Lens of Neural Collapse [7.04686607977352]
安全なデプロイメントには、アウト・オブ・ディストリビューション(OOD)検出が不可欠だ。
既存の検出器は、一般化の相違とコストの懸念を示す。
我々はニューラル崩壊の傾向にインスパイアされた、高度に多用途で効率的なOOD検出器を提案する。
論文 参考訳(メタデータ) (2023-11-02T05:18:28Z) - NECO: NEural Collapse Based Out-of-distribution detection [2.4958897155282282]
OOD検出のための新しいポストホック法NECOを紹介する。
実験の結果,NECOは小型・大規模OOD検出タスクの両方を達成できた。
OOD検出における本手法の有効性を理論的に説明する。
論文 参考訳(メタデータ) (2023-10-10T17:53:36Z) - LINe: Out-of-Distribution Detection by Leveraging Important Neurons [15.797257361788812]
本稿では,分布内データとOODデータ間のモデル出力の差を解析するための新しい側面を紹介する。
本稿では,分布検出のポストホックアウトのための新しい手法であるLINe( Leveraging Important Neurons)を提案する。
論文 参考訳(メタデータ) (2023-03-24T13:49:05Z) - On the Impact of Spurious Correlation for Out-of-distribution Detection [14.186776881154127]
我々は、不変性と環境特性の両方を考慮して、データシフトをモデル化し、新しい形式化を提案する。
その結果, トレーニングセットにおいて, 突発的特徴とラベルの相関が大きくなると, 検出性能が著しく悪化することが示唆された。
論文 参考訳(メタデータ) (2021-09-12T23:58:17Z) - Provably Robust Detection of Out-of-distribution Data (almost) for free [124.14121487542613]
ディープニューラルネットワークは、アウト・オブ・ディストリビューション(OOD)データに対する高い過度な予測を生成することが知られている。
本稿では,認証可能なOOD検出器を標準分類器と組み合わせてOOD認識分類器を提案する。
このようにして、我々は2つの世界のベストを達成している。OOD検出は、分布内に近いOODサンプルであっても、予測精度を損なうことなく、非操作型OODデータに対する最先端のOOD検出性能に近接する。
論文 参考訳(メタデータ) (2021-06-08T11:40:49Z) - Label Smoothed Embedding Hypothesis for Out-of-Distribution Detection [72.35532598131176]
我々は,$k$-NN 密度推定値を用いて OOD サンプルを検出する教師なし手法を提案する。
emphLabel Smoothed Embedding hypothesis と呼ばれるラベル平滑化に関する最近の知見を活用する。
提案手法は,多くのOODベースラインを上回り,新しい有限サンプル高確率統計結果を提供することを示す。
論文 参考訳(メタデータ) (2021-02-09T21:04:44Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
ニューラルネットワークの現在のアウト・オブ・ディストリビューション(OOD)検出アルゴリズムは,様々なOOD検出シナリオにおいて不満足な結果をもたらすことを示す。
本稿では,テストデータのバッチを観察した後に検出方法を調整することで,このような「ハード」なOODシナリオがいかに有用かを検討する。
本稿では,テストデータと正規化に人工ラベリング手法を用いて,テストバッチ内のOODサンプルに対してのみ矛盾予測を生成するモデルのアンサンブルを求める手法を提案する。
論文 参考訳(メタデータ) (2020-12-10T16:55:13Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
既存の検出機構は, 分布内およびOOD入力の評価において, 極めて脆弱であることを示す。
ALOE と呼ばれる実効性のあるアルゴリズムを提案する。このアルゴリズムは,逆向きに構築された逆数と外数の両方の例にモデルを公開することにより,堅牢なトレーニングを行う。
論文 参考訳(メタデータ) (2020-03-21T17:46:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。