論文の概要: Exploiting Heterogeneity in Robust Federated Best-Arm Identification
- arxiv url: http://arxiv.org/abs/2109.05700v2
- Date: Wed, 15 Sep 2021 15:24:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-16 11:39:17.718062
- Title: Exploiting Heterogeneity in Robust Federated Best-Arm Identification
- Title(参考訳): ロバストフェデレーション型ベストアーム識別における不均一性の利用
- Authors: Aritra Mitra, Hamed Hassani and George Pappas
- Abstract要約: Fed-SELは、逐次除去技術に基づく単純な通信効率のアルゴリズムであり、クライアントのローカルサンプリングステップを含む。
異種問題の場合、Fed-SELは1ラウンドの通信でベストアームを出力する。
最後のコントリビューションとして、フェデレーションとピアツーピア設定の両方を対象としてFed-SELの亜種を開発しました。
- 参考スコア(独自算出の注目度): 19.777265059976337
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study a federated variant of the best-arm identification problem in
stochastic multi-armed bandits: a set of clients, each of whom can sample only
a subset of the arms, collaborate via a server to identify the best arm (i.e.,
the arm with the highest mean reward) with prescribed confidence. For this
problem, we propose Fed-SEL, a simple communication-efficient algorithm that
builds on successive elimination techniques and involves local sampling steps
at the clients. To study the performance of Fed-SEL, we introduce a notion of
arm-heterogeneity that captures the level of dissimilarity between
distributions of arms corresponding to different clients. Interestingly, our
analysis reveals the benefits of arm-heterogeneity in reducing both the sample-
and communication-complexity of Fed-SEL. As a special case of our analysis, we
show that for certain heterogeneous problem instances, Fed-SEL outputs the
best-arm after just one round of communication. Our findings have the following
key implication: unlike federated supervised learning where recent work has
shown that statistical heterogeneity can lead to poor performance, one can
provably reap the benefits of both local computation and heterogeneity for
federated best-arm identification. As our final contribution, we develop
variants of Fed-SEL, both for federated and peer-to-peer settings, that are
robust to the presence of Byzantine clients, and hence suitable for deployment
in harsh, adversarial environments.
- Abstract(参考訳): 確率的多腕バンディットにおける最良腕識別問題の連帯型について検討する: 各腕のサブセットのみをサンプリングできるクライアントの集合は、サーバを介して協力し、最高の腕(すなわち、最高の平均報酬を持つ腕)を所定の信頼度で識別する。
そこで本稿では,Fed-SELを提案する。Fed-SELは,逐次除去技術に基づく単純な通信効率のアルゴリズムで,クライアントの局所サンプリングを行う。
本稿では,Fed-SELの性能を検討するために,異なるクライアントに対応するアームの分布の相違を捉えるアームヘテロジニティの概念を導入する。
興味深いことに,本研究は,feed-selのサンプルと通信複雑度を減少させる際のアームヘテロゲニティの利点を明らかにする。
分析の特別な例として、ある異種問題の場合、Fed-SELは1ラウンドの通信後にベストアームを出力することを示す。
最近の研究で統計的不均一性が性能の低下につながることが示されているフェデレート教師付き学習とは異なり、局所計算とフェデレートベストアーム識別のヘテロゲニティの両方の利点を確実に享受することができる。
最終コントリビューションとして、フェデレーションとピアツーピアの両方を対象としてFed-SELの亜種を開発しました。
関連論文リスト
- Best Arm Identification with Minimal Regret [55.831935724659175]
最高の腕識別問題 優雅にアマルガメートは、最小化とBAIを後悔している。
エージェントの目標は、所定の信頼度で最高の腕を特定することである。
二重KL-UCBアルゴリズムは、信頼度がゼロになる傾向があるため、最適性を達成する。
論文 参考訳(メタデータ) (2024-09-27T16:46:02Z) - Representative Arm Identification: A fixed confidence approach to identify cluster representatives [7.459521930846415]
マルチアームバンディット(MAB)フレームワークにおける代表腕識別問題について検討する。
RAI問題は、最高の腕や、上位の$K$から$M$を識別するなど、いくつかのよく研究されたMAB問題としてカバーされている。
本稿では,信頼区間の概念に基づく2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-26T11:47:52Z) - Best Arm Identification with Fixed Budget: A Large Deviation Perspective [54.305323903582845]
我々は、様々な武器の報酬間の経験的ギャップに基づいて、あらゆるラウンドで腕を拒絶できる真に適応的なアルゴリズムであるsredを提示する。
特に、様々な武器の報酬の間の経験的ギャップに基づいて、あらゆるラウンドで腕を拒絶できる真に適応的なアルゴリズムであるsredを提示する。
論文 参考訳(メタデータ) (2023-12-19T13:17:43Z) - Pure Exploration under Mediators' Feedback [63.56002444692792]
マルチアームバンディット(Multi-armed bandits)は、各インタラクションステップにおいて、学習者が腕を選択し、報酬を観察する、シーケンシャルな意思決定フレームワークである。
本稿では,学習者が仲介者の集合にアクセスできるシナリオについて考察する。
本稿では,学習者には仲介者の方針が知られていると仮定して,最適な腕を発見するための逐次的意思決定戦略を提案する。
論文 参考訳(メタデータ) (2023-08-29T18:18:21Z) - Covariance Adaptive Best Arm Identification [0.0]
ゴールは、腕のプル数を最小化しながら、最低でも1-$delta$の確率で腕を最も平均的な報酬で識別することである。
武器を頼りにでき、報酬を同時にサンプリングできる、より柔軟なシナリオを提案する。
この枠組みは、患者と薬物の類似性から根底にある相関関係が示唆される臨床試験など、様々な応用に関係している。
論文 参考訳(メタデータ) (2023-06-05T06:57:09Z) - On the Complexity of Multi-Agent Decision Making: From Learning in Games
to Partial Monitoring [105.13668993076801]
マルチエージェント強化学習(MARL)理論における中心的な問題は、構造条件やアルゴリズムの原理がサンプル効率の学習保証につながるかを理解することである。
本稿では,複数のエージェントを用いた対話型意思決定のための一般的な枠組みとして,この問題について考察する。
マルチエージェント意思決定における統計的複雑性を特徴付けることは、単一エージェント決定の統計的複雑性を特徴付けることと等価であることを示す。
論文 参考訳(メタデータ) (2023-05-01T06:46:22Z) - Combating Exacerbated Heterogeneity for Robust Models in Federated
Learning [91.88122934924435]
対人訓練と連合学習の組み合わせは、望ましくない頑丈さの劣化につながる可能性がある。
我々は、Slack Federated Adversarial Training (SFAT)と呼ばれる新しいフレームワークを提案する。
各種ベンチマークおよび実世界のデータセットに対するSFATの合理性と有効性を検証する。
論文 参考訳(メタデータ) (2023-03-01T06:16:15Z) - FedSkip: Combatting Statistical Heterogeneity with Federated Skip
Aggregation [95.85026305874824]
我々はFedSkipと呼ばれるデータ駆動型アプローチを導入し、フェデレーション平均化を定期的にスキップし、ローカルモデルをクロスデバイスに分散することで、クライアントの最適化を改善する。
我々は、FedSkipがはるかに高い精度、より良いアグリゲーション効率、競合する通信効率を達成することを示すために、さまざまなデータセットに関する広範な実験を行う。
論文 参考訳(メタデータ) (2022-12-14T13:57:01Z) - Federated Multi-Armed Bandits Under Byzantine Attacks [8.974667651758095]
FMAB(Federated Multi-armed Bandits)は、学習者がMABゲームをし、集約されたフィードバックをサーバに伝達し、グローバルな最適なアームを学ぶための新興フレームワークである。
本研究では,学習プロセスを脅かす偽モデル更新を送信できるビザンティンクライアントの存在下でのFMAB問題について検討する。
我々は,ビザンティンの顧客に対応するために,中央値平均オンラインアルゴリズムであるFed-MoM-UCBを提案する。
論文 参考訳(メタデータ) (2022-05-09T09:06:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。