論文の概要: Best Arm Identification with Minimal Regret
- arxiv url: http://arxiv.org/abs/2409.18909v1
- Date: Fri, 27 Sep 2024 16:46:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-01 07:51:30.144778
- Title: Best Arm Identification with Minimal Regret
- Title(参考訳): 最小レグレットを用いたベストアーム識別
- Authors: Junwen Yang, Vincent Y. F. Tan, Tianyuan Jin,
- Abstract要約: 最高の腕識別問題 優雅にアマルガメートは、最小化とBAIを後悔している。
エージェントの目標は、所定の信頼度で最高の腕を特定することである。
二重KL-UCBアルゴリズムは、信頼度がゼロになる傾向があるため、最適性を達成する。
- 参考スコア(独自算出の注目度): 55.831935724659175
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motivated by real-world applications that necessitate responsible experimentation, we introduce the problem of best arm identification (BAI) with minimal regret. This innovative variant of the multi-armed bandit problem elegantly amalgamates two of its most ubiquitous objectives: regret minimization and BAI. More precisely, the agent's goal is to identify the best arm with a prescribed confidence level $\delta$, while minimizing the cumulative regret up to the stopping time. Focusing on single-parameter exponential families of distributions, we leverage information-theoretic techniques to establish an instance-dependent lower bound on the expected cumulative regret. Moreover, we present an intriguing impossibility result that underscores the tension between cumulative regret and sample complexity in fixed-confidence BAI. Complementarily, we design and analyze the Double KL-UCB algorithm, which achieves asymptotic optimality as the confidence level tends to zero. Notably, this algorithm employs two distinct confidence bounds to guide arm selection in a randomized manner. Our findings elucidate a fresh perspective on the inherent connections between regret minimization and BAI.
- Abstract(参考訳): 責任ある実験を必要とする現実世界のアプリケーションによって動機付けられ、最小限の後悔を伴うベストアーム識別(BAI)の問題を提起する。
マルチアームバンディット問題のこの革新的な変種は、最もユビキタスな目的である、後悔の最小化とBAIの2つをエレガントにアマルガメイトしている。
より正確には、エージェントの目標は、所定の信頼レベル$\delta$の最高の腕を識別し、累積的後悔を停止時間まで最小化することである。
分布の単一パラメータ指数族に焦点をあて、情報理論の手法を活用し、期待される累積後悔に基づいて、インスタンス依存の下位境界を確立する。
さらに, 信頼度の高いBAIにおいて, 累積的後悔とサンプルの複雑さの緊張感を浮き彫りにする, 興味をそそる不合理な結果を示す。
相補的に、信頼度がゼロになるにつれて漸近的最適性を達成するDouble KL-UCBアルゴリズムを設計・解析する。
特に、このアルゴリズムは2つの異なる信頼境界を用いて、ランダムにアームの選択を誘導する。
本研究は, 後悔の最小化とBAIの関連性について, 新たな視点を呈するものである。
関連論文リスト
- Reward Maximization for Pure Exploration: Minimax Optimal Good Arm Identification for Nonparametric Multi-Armed Bandits [35.35226227009685]
グッドアーム識別(グッドアームアイソレーション、英: Good Arm Identification、IGA)は、腕をできるだけ早くしきい値以上の手段でラベル付けすることを目的とした、実用的なバンドイット推論の目的である。
本稿では,報奨最大化サンプリングアルゴリズムと新たな非有意シーケンシャルテストを組み合わせることで,GAを効率よく解くことができることを示す。
我々の実験結果は、ミニマックス設定を超えるアプローチを検証し、すべての停止時間におけるサンプルの期待数を、合成および実世界の設定で少なくとも50%削減する。
論文 参考訳(メタデータ) (2024-10-21T01:19:23Z) - Optimal Multi-Fidelity Best-Arm Identification [65.23078799972188]
バンディットのベストアーム識別において、アルゴリズムは、できるだけ早く特定の精度で、最高平均報酬の腕を見つけることを任務とする。
マルチフィデリティのベストアーム識別について検討し、低コストで低いフィデリティ(正確な平均推定値を持たない)で腕をサンプリングすることを選択できる。
この問題に対処するためのいくつかの方法が提案されているが、その最適性は、特に最適な腕を特定するのに必要な総コストのゆるやかな下限のため、未解決のままである。
論文 参考訳(メタデータ) (2024-06-05T08:02:40Z) - Best Arm Identification with Fixed Budget: A Large Deviation Perspective [54.305323903582845]
我々は、様々な武器の報酬間の経験的ギャップに基づいて、あらゆるラウンドで腕を拒絶できる真に適応的なアルゴリズムであるsredを提示する。
特に、様々な武器の報酬の間の経験的ギャップに基づいて、あらゆるラウンドで腕を拒絶できる真に適応的なアルゴリズムであるsredを提示する。
論文 参考訳(メタデータ) (2023-12-19T13:17:43Z) - Proportional Response: Contextual Bandits for Simple and Cumulative
Regret Minimization [29.579719765255927]
本稿では,文脈的帯域幅設定のための効率的な帯域幅アルゴリズムのファミリーを提案する。
我々のアルゴリズムは任意の関数クラスで動作し、不特定性をモデル化するのに堅牢で、連続したアーム設定で使用できます。
論文 参考訳(メタデータ) (2023-07-05T08:34:54Z) - Asymptotically Optimal Fixed-Budget Best Arm Identification with
Variance-Dependent Bounds [10.915684166086026]
単純後悔を最小化するための固定予算ベストアーム識別(BAI)の問題点について検討する。
この決定は,最善腕と推奨腕の期待結果との違いである,期待された単純後悔に基づいて評価する。
我々は,HIR推定器(ヒラノら,2003年)を用いて最適な腕を推奨する2段階(TS-Hirano-Imbens-Ridder-HIR)戦略を提案する。
論文 参考訳(メタデータ) (2023-02-06T18:27:11Z) - Achieving the Pareto Frontier of Regret Minimization and Best Arm
Identification in Multi-Armed Bandits [91.8283876874947]
本稿では,BoBW-lil'UCB$(gamma)$アルゴリズムの設計と解析を行う。
i) RMとBAIの両方の目的に対して最適なアルゴリズムを同時に実行できないことを示す。
また、BoBW-lil'UCB$(gamma)$は、時間複雑性と後悔の点で競合よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-10-16T17:52:32Z) - On Lower Bounds for Standard and Robust Gaussian Process Bandit
Optimization [55.937424268654645]
有界ノルムを持つ関数のブラックボックス最適化問題に対するアルゴリズム非依存な下界を考える。
本稿では, 単純さ, 汎用性, エラー確率への依存性の向上など, 後悔の下位境界を導出するための新しい証明手法を提案する。
論文 参考訳(メタデータ) (2020-08-20T03:48:14Z) - Constrained regret minimization for multi-criterion multi-armed bandits [5.349852254138086]
リスク制約を条件として,所与の時間的地平線上での後悔の最小化の問題について検討する。
本稿では,対数的後悔を保証するリスク制約付き低信頼境界アルゴリズムを提案する。
我々は,リスク制約付き後悔最小化アルゴリズムの性能に低い限界を証明した。
論文 参考訳(メタデータ) (2020-06-17T04:23:18Z) - The Simulator: Understanding Adaptive Sampling in the
Moderate-Confidence Regime [52.38455827779212]
エミュレータと呼ばれる適応サンプリングを解析するための新しい手法を提案する。
適切なログファクタを組み込んだトップk問題の最初のインスタンスベースの下位境界を証明します。
我々の新しい分析は、後者の問題に対するこの種の最初のエミュレータであるベストアームとトップkの識別に、シンプルでほぼ最適であることを示した。
論文 参考訳(メタデータ) (2017-02-16T23:42:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。