論文の概要: Variational Disentanglement for Domain Generalization
- arxiv url: http://arxiv.org/abs/2109.05826v1
- Date: Mon, 13 Sep 2021 09:55:32 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-14 15:34:06.991197
- Title: Variational Disentanglement for Domain Generalization
- Title(参考訳): 領域一般化のための変分アンタングルメント
- Authors: Yufei Wang, Haoliang Li, Lap-Pui Chau, Alex C. Kot
- Abstract要約: 本稿では,変分拡散ネットワーク(VDN)という効果的なフレームワークを提供することにより,領域一般化の課題に取り組むことを提案する。
VDNは、ドメイン固有の機能とタスク固有の機能を切り離し、タスク固有のフィーチャは、見えないが関連するテストデータにより良い一般化が期待できる。
- 参考スコア(独自算出の注目度): 65.79387438988554
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain generalization aims to learn an invariant model that can generalize
well to the unseen target domain. In this paper, we propose to tackle the
problem of domain generalization by delivering an effective framework named
Variational Disentanglement Network (VDN), which is capable of disentangling
the domain-specific features and task-specific features, where the
task-specific features are expected to be better generalized to unseen but
related test data. We further show the rationale of our proposed method by
proving that our proposed framework is equivalent to minimize the evidence
upper bound of the divergence between the distribution of task-specific
features and its invariant ground truth derived from variational inference. We
conduct extensive experiments to verify our method on three benchmarks, and
both quantitative and qualitative results illustrate the effectiveness of our
method.
- Abstract(参考訳): ドメインの一般化は、未知の対象領域にうまく一般化できる不変モデルを学ぶことを目的としている。
本稿では、ドメイン固有の特徴とタスク固有の特徴を分離し、タスク固有の特徴を、見えないが関連するテストデータに対してより一般化できるような、効果的なフレームワークである変動分散ネットワーク(VDN)を提供することにより、ドメインの一般化の課題に取り組むことを提案する。
さらに,提案手法の理論的根拠として,課題特化特徴の分布と変分推論から導かれる不変基底真理との相違の証拠の上限を最小化するために,提案手法が等価であることを示す。
提案手法を3つのベンチマークで検証するために広範な実験を行い,定量的・質的評価結果から本手法の有効性を明らかにした。
関連論文リスト
- Causality-inspired Latent Feature Augmentation for Single Domain Generalization [13.735443005394773]
単一ドメインの一般化(Single-DG)は、単一のトレーニングドメインのみを持つ一般化可能なモデルを開発し、他の未知のターゲットドメインでうまく機能させることを目的としている。
ドメイン・ハングリー構成の下で、ソース・ドメインのカバレッジを拡大し、異なる分布にまたがる固有の因果的特徴を見つける方法がモデルの一般化能力を高める鍵となる。
本稿では、因果学習と介入に基づく特徴レベルの変換のメタ知識を学習することで、単一DGの因果性に着想を得た潜在機能拡張手法を提案する。
論文 参考訳(メタデータ) (2024-06-10T02:42:25Z) - DIGIC: Domain Generalizable Imitation Learning by Causal Discovery [69.13526582209165]
因果性は機械学習と組み合わせて、ドメインの一般化のための堅牢な表現を生成する。
我々は、実証データ分布を活用して、ドメインの一般化可能なポリシーの因果的特徴を発見するために、異なる試みを行っている。
DIGICと呼ばれる新しいフレームワークを設計し、実演データ分布から専門家行動の直接的な原因を見出すことにより因果的特徴を識別する。
論文 参考訳(メタデータ) (2024-02-29T07:09:01Z) - NormAUG: Normalization-guided Augmentation for Domain Generalization [60.159546669021346]
ディープラーニングのためのNormAUG(Normalization-guided Augmentation)と呼ばれるシンプルで効果的な手法を提案する。
本手法は特徴レベルで多様な情報を導入し,主経路の一般化を改善する。
テスト段階では、アンサンブル戦略を利用して、モデルの補助経路からの予測を組み合わせ、さらなる性能向上を図る。
論文 参考訳(メタデータ) (2023-07-25T13:35:45Z) - Cross Contrasting Feature Perturbation for Domain Generalization [11.863319505696184]
ドメインの一般化は、目に見えないターゲットドメインをうまく一般化するソースドメインから堅牢なモデルを学ぶことを目的としています。
近年の研究では、ソースドメインに相補的な分布を多様化するための新しいドメインサンプルや特徴の生成に焦点が当てられている。
ドメインシフトをシミュレートするオンラインワンステージクロスコントラスト機能摂動フレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-24T03:27:41Z) - Best-Effort Adaptation [62.00856290846247]
本稿では, 試料再重み付け法に関する新しい理論的解析を行い, 試料再重み付け法を一様に保持する境界について述べる。
これらの境界が、我々が詳細に議論する学習アルゴリズムの設計を導く方法を示す。
本稿では,本アルゴリズムの有効性を実証する一連の実験結果について報告する。
論文 参考訳(メタデータ) (2023-05-10T00:09:07Z) - Randomized Adversarial Style Perturbations for Domain Generalization [49.888364462991234]
本稿では,RASP(Randomized Adversarial Style Perturbation)と呼ばれる新しい領域一般化手法を提案する。
提案アルゴリズムは, ランダムに選択されたクラスに対して, 対角方向の特徴のスタイルを乱し, 予期せぬ対象領域で観測される予期せぬスタイルに誤解されないよう, モデルを学習させる。
提案アルゴリズムは,様々なベンチマークによる広範な実験により評価され,特に大規模ベンチマークにおいて,領域一般化性能が向上することを示す。
論文 参考訳(メタデータ) (2023-04-04T17:07:06Z) - Generalizing to Unseen Domains with Wasserstein Distributional Robustness under Limited Source Knowledge [22.285156929279207]
ドメインの一般化は、目に見えないターゲットドメインでうまく機能する普遍的なモデルを学ぶことを目的としている。
We propose a novel domain generalization framework called Wasserstein Distributionally Robust Domain Generalization (WDRDG)。
論文 参考訳(メタデータ) (2022-07-11T14:46:50Z) - Contrastive ACE: Domain Generalization Through Alignment of Causal
Mechanisms [34.99779761100095]
ドメインの一般化は、異なる分布にまたがる知識不変性を学ぶことを目的としている。
ラベルに対する特徴の因果効果の平均的因果効果の因果不変性を考察する。
論文 参考訳(メタデータ) (2021-06-02T04:01:22Z) - A Bit More Bayesian: Domain-Invariant Learning with Uncertainty [111.22588110362705]
ドメインの一般化は、ドメインシフトと、ターゲットドメインデータのアクセス不能に起因する不確実性のために困難である。
本稿では,変分ベイズ推定に基づく確率的枠組みを用いて,両課題に対処する。
2層ベイズ型ニューラルネットワークで共同で確立されたドメイン不変表現と分類器を導出する。
論文 参考訳(メタデータ) (2021-05-09T21:33:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。