論文の概要: Construction of Grid Operators for Multilevel Solvers: a Neural Network
Approach
- arxiv url: http://arxiv.org/abs/2109.05873v1
- Date: Mon, 13 Sep 2021 11:19:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-15 01:15:16.761406
- Title: Construction of Grid Operators for Multilevel Solvers: a Neural Network
Approach
- Title(参考訳): ニューラルネットワークによるマルチレベル解法のためのグリッド演算子の構築
- Authors: Claudio Tomasi and Rolf Krause
- Abstract要約: Multigridメソッドは演算子を使って異なるレベルの近似間で情報を転送する。
演算子を学習するためのディープニューラルネットワークモデルを提案し,ネットワークの出力に基づいて階層構造を構築する。
グリッド演算子構築のためのこのニューラルネットワークアプローチは、マルチレベルソルバの自動定義のために拡張することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we investigate the combination of multigrid methods and neural
networks, starting from a Finite Element discretization of an elliptic PDE.
Multigrid methods use interpolation operators to transfer information between
different levels of approximation. These operators are crucial for fast
convergence of multigrid, but they are generally unknown. We propose Deep
Neural Network models for learning interpolation operators and we build a
multilevel hierarchy based on the output of the network. We investigate the
accuracy of the interpolation operator predicted by the Neural Network, testing
it with different network architectures. This Neural Network approach for the
construction of grid operators can then be extended for an automatic definition
of multilevel solvers, allowing a portable solution in scientific computing
- Abstract(参考訳): 本稿では,楕円型pdeの有限要素離散化を出発点として,マルチグリッド法とニューラルネットワークの組み合わせについて検討する。
マルチグリッドメソッドは補間演算子を使用して、異なるレベルの近似間で情報を転送する。
これらの演算子はマルチグリッドの高速収束に不可欠であるが、一般には未知である。
補間演算子を学習するためのディープニューラルネットワークモデルを提案し,ネットワークの出力に基づいて階層構造を構築する。
ニューラルネットワークによって予測される補間演算子の精度について検討し,異なるネットワークアーキテクチャで検証する。
グリッド演算子構築のためのこのニューラルネットワークアプローチは、マルチレベルソルバの自動定義のために拡張することができ、科学計算におけるポータブルなソリューションを可能にする。
関連論文リスト
- Learning the Optimal Path and DNN Partition for Collaborative Edge Inference [4.368333109035076]
Deep Neural Networks (DNN)は、多数のインテリジェントなモバイルアプリケーションとサービスの開発を触媒している。
これを解決するために、協調的なエッジ推論が提案されている。
この方法では、DNN推論タスクを複数のサブタスクに分割し、それらを複数のネットワークノードに分散する。
我々は,従来のブロックされたEXP3アルゴリズムとLinUCBアルゴリズムの要素を組み合わせたB-EXPUCBアルゴリズムを導入し,そのサブ線形後悔を示す。
論文 参考訳(メタデータ) (2024-10-02T01:12:16Z) - Connections between Operator-splitting Methods and Deep Neural Networks
with Applications in Image Segmentation [7.668812831777923]
ディープニューラルネットワークと数学的アルゴリズムの接続方法はまだ開発中だ。
ディープニューラルネットワークについて,特に演算子分割との接続において,アルゴリズムによる説明を行う。
Pottsモデルを解く演算子分割法に着想を得た2つのネットワークを提案する。
論文 参考訳(メタデータ) (2023-07-18T08:06:14Z) - OFA$^2$: A Multi-Objective Perspective for the Once-for-All Neural
Architecture Search [79.36688444492405]
once-for-All(OFA)は、異なるリソース制約を持つデバイスのための効率的なアーキテクチャを探索する問題に対処するために設計された、ニューラルネットワーク検索(NAS)フレームワークである。
我々は,探索段階を多目的最適化問題として明示的に考えることにより,効率の追求を一歩進めることを目指している。
論文 参考訳(メタデータ) (2023-03-23T21:30:29Z) - Exploring the Approximation Capabilities of Multiplicative Neural
Networks for Smooth Functions [9.936974568429173]
対象関数のクラスは、一般化帯域制限関数とソボレフ型球である。
以上の結果から、乗法ニューラルネットワークは、これらの関数をはるかに少ない層とニューロンで近似できることを示した。
これらの結果は、乗法ゲートが標準フィードフォワード層より優れ、ニューラルネットワーク設計を改善する可能性があることを示唆している。
論文 参考訳(メタデータ) (2023-01-11T17:57:33Z) - Dynamic Graph: Learning Instance-aware Connectivity for Neural Networks [78.65792427542672]
動的グラフネットワーク(DG-Net)は完全な有向非巡回グラフであり、ノードは畳み込みブロックを表し、エッジは接続経路を表す。
ネットワークの同じパスを使用する代わりに、DG-Netは各ノードの機能を動的に集約する。
論文 参考訳(メタデータ) (2020-10-02T16:50:26Z) - Exploiting Heterogeneity in Operational Neural Networks by Synaptic
Plasticity [87.32169414230822]
最近提案されたネットワークモデルであるオペレーショナルニューラルネットワーク(ONN)は、従来の畳み込みニューラルネットワーク(CNN)を一般化することができる。
本研究では, 生体ニューロンにおける本質的な学習理論を示すSynaptic Plasticityパラダイムに基づいて, ネットワークの隠蔽ニューロンに対する最強演算子集合の探索に焦点をあてる。
高難易度問題に対する実験結果から、神経細胞や層が少なくても、GISベースのONNよりも優れた学習性能が得られることが示された。
論文 参考訳(メタデータ) (2020-08-21T19:03:23Z) - Multi-Level Local SGD for Heterogeneous Hierarchical Networks [11.699472346137739]
異種ネットワークにおける学習・非目的フレームワークのための分散勾配法であるマルチレベルローカルSGDを提案する。
まず,マルチレベル局所SGDアルゴリズムを記述する統一数学的手法を提案する。
次に,アルゴリズムの理論的解析を行う。
論文 参考訳(メタデータ) (2020-07-27T19:14:23Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Self-Organized Operational Neural Networks with Generative Neurons [87.32169414230822]
ONNは、任意の非線型作用素をカプセル化できる一般化されたニューロンモデルを持つ異種ネットワークである。
我々は,各接続の結節演算子を適応(最適化)できる生成ニューロンを有する自己組織型ONN(Self-ONNs)を提案する。
論文 参考訳(メタデータ) (2020-04-24T14:37:56Z) - DHP: Differentiable Meta Pruning via HyperNetworks [158.69345612783198]
本稿では,ネットワークの自動プルーニングのためのハイパーネットによる識別可能なプルーニング手法を提案する。
遅延ベクトルは、バックボーンネットワーク内の畳み込み層の出力チャネルを制御し、レイヤのプルーニングのハンドルとして機能する。
画像分類、単一画像超解像、復調のための様々なネットワークで実験が行われた。
論文 参考訳(メタデータ) (2020-03-30T17:59:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。