論文の概要: NN-AE-VQE: Neural network parameter prediction on autoencoded variational quantum eigensolvers
- arxiv url: http://arxiv.org/abs/2411.15667v1
- Date: Sat, 23 Nov 2024 23:09:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:20:03.475236
- Title: NN-AE-VQE: Neural network parameter prediction on autoencoded variational quantum eigensolvers
- Title(参考訳): NN-AE-VQE:自己符号化可変量子固有解器のニューラルネットワークパラメータ予測
- Authors: Koen Mesman, Yinglu Tang, Matthias Moller, Boyang Chen, Sebastian Feld,
- Abstract要約: 近年、量子コンピューティングの分野は大幅に成熟している。
NN-AE-VQEというニューラルネットワークを用いた自動符号化VQEを提案する。
我々はこれらの手法を、化学的精度を達成するために、$H$分子上で実証する。
- 参考スコア(独自算出の注目度): 1.7400502482492273
- License:
- Abstract: A longstanding computational challenge is the accurate simulation of many-body particle systems. Especially for deriving key characteristics of high-impact but complex systems such as battery materials and high entropy alloys (HEA). While simple models allow for simulations of the required scale, these methods often fail to capture the complex dynamics that determine the characteristics. A long-theorized approach is to use quantum computers for this purpose, which allows for a more efficient encoding of quantum mechanical systems. In recent years, the field of quantum computing has become significantly more mature. Furthermore, the rise in integration of machine learning with quantum computing further pushes to a near-term advantage. In this work we aim to improve the well-established quantum computing method for calculating the inter-atomic potential, the variational quantum eigensolver, by presenting an auto-encoded VQE with neural-network predictions: NN-AE-VQE. We apply a quantum autoencoder for a compressed quantum state representation of the atomic system, to which a naive circuit ansatz is applied. This reduces the number of circuit parameters to optimize, while still minimal reduction in accuracy. Additionally, we train a classical neural network to predict the circuit parameters to avoid computationally expensive parameter optimization. We demonstrate these methods on a $H_2$ molecule, achieving chemical accuracy. We believe this method shows promise of efficiently capturing highly accurate systems while omitting current bottlenecks of variational quantum algorithms. Finally, we explore options for exploiting the algorithm structure and further algorithm improvements.
- Abstract(参考訳): 長年の計算課題は、多体粒子系の正確なシミュレーションである。
特に, 電池材料や高エントロピー合金 (HEA) などの複合系のキー特性の導出について検討した。
単純なモデルは必要なスケールのシミュレーションを可能にするが、これらの手法は特性を決定する複雑な力学を捉えるのに失敗することが多い。
この目的のために量子コンピュータを使用することで、量子力学系のより効率的な符号化が可能になる。
近年、量子コンピューティングの分野は大幅に成熟している。
さらに、機械学習と量子コンピューティングの統合の高まりは、短期的な優位性をさらに押し上げている。
本研究では,ニューラルネットワークを用いた自動符号化VQE(NN-AE-VQE)を提示することにより,原子間ポテンシャル,変分量子固有解器の計算方法を改善することを目的とする。
我々は、原子系の圧縮量子状態表現に量子オートエンコーダを適用し、そこでは、ナイーブ回路アンサッツを適用する。
これにより、最適化する回路パラメータの数を削減できるが、精度は最小限に抑えられる。
さらに、計算コストのかかるパラメータ最適化を避けるために、回路パラメータを予測するために古典的ニューラルネットワークを訓練する。
我々はこれらの手法を、化学的精度を達成するために、$H_2$分子上で実証する。
この手法は、変動量子アルゴリズムの現在のボトルネックを省きながら、高精度なシステムを効率的に捉えることを約束していると信じている。
最後に,アルゴリズム構造を利用するための選択肢と,さらなるアルゴリズム改良について検討する。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum Resonant Dimensionality Reduction and Its Application in Quantum Machine Learning [2.7119354495508787]
本稿では,入力データの次元を低減するために,量子共振器遷移に基づくQRDRアルゴリズムを提案する。
QRDR後、入力データの寸法$N$を所望のスケール$R$に減らし、元のデータの有効情報を保存する。
我々のアルゴリズムは様々な計算分野に応用できる可能性がある。
論文 参考訳(メタデータ) (2024-05-21T09:26:18Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - Learning To Optimize Quantum Neural Network Without Gradients [3.9848482919377006]
本稿では,量子回路のパラメータを出力するために,Emphmeta-Optimizerネットワークをトレーニングする新しいメタ最適化アルゴリズムを提案する。
我々は,従来の勾配に基づくアルゴリズムよりも回路評価が少ない場合に,より高品質な最小値が得られることを示す。
論文 参考訳(メタデータ) (2023-04-15T01:09:12Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
本稿では,量子回路の初期化を最適化するために,古典計算資源を利用するスケーラブルな手法を提案する。
本手法は, PQCのトレーニング性, 性能を, 様々な問題において著しく向上させることを示す。
古典的コンピュータを用いて限られた量子資源を増強する手法を実証することにより、量子コンピューティングにおける量子と量子に着想を得たモデル間の相乗効果を実証する。
論文 参考訳(メタデータ) (2022-08-29T15:24:03Z) - Identification of topological phases using classically-optimized
variational quantum eigensolver [0.6181093777643575]
変分量子固有解法(VQE)は、量子コンピュータにおけるハイブリッド量子古典アルゴリズムの候補として期待されている。
本稿では,従来のコンピュータ上で最適化プロセス全体を効率的に行う古典最適化VQE(co-VQE)を提案する。
共同VQEでは、パラメータが最適化された後のみ、量子コンピュータを用いて非局所的な量を測定する。
論文 参考訳(メタデータ) (2022-02-07T02:26:58Z) - Realizing Quantum Convolutional Neural Networks on a Superconducting
Quantum Processor to Recognize Quantum Phases [2.1465372441653354]
量子ニューラルネットワークは、ユニタリ演算、測定、フィードフォワードの約束を組み合わせることで、量子状態の特定の特徴を認識するように調整され、少ない測定とエラーを許容する。
我々は、7量子ビット超伝導量子プロセッサ上で量子畳み込みニューラルネットワーク(QCNN)を実現し、非ゼロ弦順序パラメータを特徴とするスピンモデルの対称性保護位相を同定する。
その結果,QCNNは有限忠実ゲート自体で構成されているにもかかわらず,用意された状態に対する弦順パラメータの直接測定よりも位相位相を高い忠実度で認識していることがわかった。
論文 参考訳(メタデータ) (2021-09-13T12:32:57Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
本研究は、D-Wave 2000Q量子アニール上の分子電子ハミルトニアン固有値-固有ベクトル問題を解くために、一般量子アニール固有解法(QAE)アルゴリズムを実装した。
そこで本研究では,D-Waveハードウェアを用いた各種分子系における基底および電子励起状態の取得について述べる。
論文 参考訳(メタデータ) (2020-09-02T22:46:47Z) - A Neural-Network Variational Quantum Algorithm for Many-Body Dynamics [15.435967947933404]
量子多体系の時間進化をシミュレートするニューラルネットワーク-ネットワーク変分量子アルゴリズムを提案する。
提案アルゴリズムは、測定コストの低い短期量子コンピュータに効率よく実装することができる。
論文 参考訳(メタデータ) (2020-08-31T02:54:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。