論文の概要: Improved Few-shot Segmentation by Redefinition of the Roles of
Multi-level CNN Features
- arxiv url: http://arxiv.org/abs/2109.06432v2
- Date: Wed, 15 Sep 2021 02:48:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-16 10:38:58.880893
- Title: Improved Few-shot Segmentation by Redefinition of the Roles of
Multi-level CNN Features
- Title(参考訳): マルチレベルCNN機能の再定義によるFew-shotセグメンテーションの改善
- Authors: Zhijie Wang, Masanori Suganuma, Takayuki Okatani
- Abstract要約: 現在のメソッドは、サポートとクエリイメージの事前訓練されたCNN機能に依存している。
優れたパフォーマンスの鍵は、中レベルの機能と高レベルの機能の適切な融合に依存する。
マルチレベル機能の役割を再定義することで、この広く採用されているアプローチを再解釈する。
- 参考スコア(独自算出の注目度): 32.70500040662247
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study is concerned with few-shot segmentation, i.e., segmenting the
region of an unseen object class in a query image, given support image(s) of
its instances. The current methods rely on the pretrained CNN features of the
support and query images. The key to good performance depends on the proper
fusion of their mid-level and high-level features; the former contains
shape-oriented information, while the latter has class-oriented information.
Current state-of-the-art methods follow the approach of Tian et al., which
gives the mid-level features the primary role and the high-level features the
secondary role. In this paper, we reinterpret this widely employed approach by
redifining the roles of the multi-level features; we swap the primary and
secondary roles. Specifically, we regard that the current methods improve the
initial estimate generated from the high-level features using the mid-level
features. This reinterpretation suggests a new application of the current
methods: to apply the same network multiple times to iteratively update the
estimate of the object's region, starting from its initial estimate. Our
experiments show that this method is effective and has updated the previous
state-of-the-art on COCO-20$^i$ in the 1-shot and 5-shot settings and on
PASCAL-5$^i$ in the 1-shot setting.
- Abstract(参考訳): 本研究は,クエリ画像中の未認識オブジェクトクラスの領域を,そのインスタンスのサポートイメージ(s)によって分割する,少数ショットのセグメンテーションに関するものである。
現在の方法は、サポートとクエリイメージの事前訓練されたCNN機能に依存している。
優れたパフォーマンスの鍵は、中レベルの特徴と高レベルの特徴の適切な融合に依存し、前者は形状指向情報、後者はクラス指向情報である。
現在の最先端の手法はTianらのアプローチに従っており、これは中級の特徴を主役とし、上位の特徴を二次役にする。
本稿では,マルチレベル機能の役割を再定義することで,この広く採用されているアプローチを再解釈し,プライマリとセカンダリの役割を交換する。
特に,本手法は,中間特徴量を用いた高次特徴量から生成された初期推定値を改善する。
この再解釈は、現在の方法の新しい応用を示唆している: 同じネットワークを複数回適用して、最初の見積もりから、オブジェクトの領域の推定を反復的に更新する。
実験の結果,COCO-20$^i$,PASCAL-5$^i$の1ショット設定,PASCAL-5$^i$設定において,従来のCOCO-20$^i$を更新した。
関連論文リスト
- Enhancing Few-Shot Image Classification through Learnable Multi-Scale Embedding and Attention Mechanisms [1.1557852082644071]
少数の分類の文脈において、ゴールは、限られた数のサンプルを使用して分類器を訓練することである。
伝統的なメートル法は、この目的を達成するための一定の限界を示す。
提案手法では,サンプルを異なる特徴空間にマッピングするマルチ出力埋め込みネットワークを利用する。
論文 参考訳(メタデータ) (2024-09-12T12:34:29Z) - CAD: Co-Adapting Discriminative Features for Improved Few-Shot
Classification [11.894289991529496]
少数のラベル付きサンプルを与えられた未確認のクラスに適応できるモデルを学ぶことを目的としている。
最近のアプローチでは、特徴抽出器を事前訓練し、その後、エピソードなメタラーニングのための微調整を行う。
本研究は, 複数ショットの分類において, 横断的および再重み付き識別機能を実現するための戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T06:14:51Z) - Spatio-temporal Relation Modeling for Few-shot Action Recognition [100.3999454780478]
本稿では,高次時間表現を同時に学習しながら,クラス固有の特徴の識別性を向上する数ショットアクション認識フレームワークSTRMを提案する。
本手法は,本研究でもっとも優れた手法に比べて,分類精度が3.5%向上した。
論文 参考訳(メタデータ) (2021-12-09T18:59:14Z) - MFNet: Multi-class Few-shot Segmentation Network with Pixel-wise Metric
Learning [34.059257121606336]
この研究は、まだほとんど探索されていない分野である少数ショットセマンティックセマンティックセグメンテーションに焦点を当てている。
まず,マルチウェイ符号化とデコードアーキテクチャを提案する。このアーキテクチャは,マルチスケールクエリ情報とマルチクラスサポート情報を1つのクエリ支援埋め込みに効果的に融合する。
標準ベンチマーク PASCAL-5i と COCO-20i による実験により, 数発のセグメンテーションにおいて, 本手法の利点が明らかに示された。
論文 参考訳(メタデータ) (2021-10-30T11:37:36Z) - InfoSeg: Unsupervised Semantic Image Segmentation with Mutual
Information Maximization [0.0]
局所的特徴と大域的高レベル特徴の相互情報に基づく教師なし画像表現の新しい手法を提案する。
最初のステップでは、ローカル機能とグローバル機能に基づいて、イメージをセグメント化する。
第2のステップでは,各クラスの局所的特徴と高次特徴との相互関係を最大化する。
論文 参考訳(メタデータ) (2021-10-07T14:01:42Z) - Learning Meta-class Memory for Few-Shot Semantic Segmentation [90.28474742651422]
全てのクラスで共有可能なメタ情報であるメタクラスの概念を導入する。
本稿では,メタクラスメモリをベースとした少ショットセグメンテーション手法 (MM-Net) を提案する。
提案したMM-Netは1ショット設定でCOCOデータセット上で37.5%のmIoUを達成する。
論文 参考訳(メタデータ) (2021-08-06T06:29:59Z) - Few-Shot Segmentation via Cycle-Consistent Transformer [74.49307213431952]
本稿では,サポートとターゲット画像間の画素ワイドな関係を利用して,数ショットのセマンティックセマンティックセグメンテーション作業を容易にすることに焦点を当てる。
本稿では, 有害なサポート機能を除去するために, 新規なサイクル一貫性アテンション機構を提案する。
提案したCyCTRは,従来の最先端手法と比較して著しく改善されている。
論文 参考訳(メタデータ) (2021-06-04T07:57:48Z) - Class-Balanced Distillation for Long-Tailed Visual Recognition [100.10293372607222]
実世界のイメージはしばしばクラスごとの画像数の著しい不均衡によって特徴づけられ、ロングテール分布に繋がる。
本研究では、インスタンスサンプリングで学習した特徴表現が長尾設定では最適とは程遠いという重要な観察を行うことで、新しいフレームワークを提案する。
我々の主な貢献は、知識蒸留を利用して特徴表現を強化する新しい訓練方法である。
論文 参考訳(メタデータ) (2021-04-12T08:21:03Z) - Universal Representation Learning from Multiple Domains for Few-shot
Classification [41.821234589075445]
複数の個別に訓練されたネットワークの知識を蒸留し,一組の普遍的な深層表現を学習することを提案する。
より効率的な適応ステップにより、未確認領域に対する普遍表現をさらに洗練できることが示される。
論文 参考訳(メタデータ) (2021-03-25T13:49:12Z) - Saliency-driven Class Impressions for Feature Visualization of Deep
Neural Networks [55.11806035788036]
分類に欠かせないと思われる特徴を視覚化することは有利である。
既存の可視化手法は,背景特徴と前景特徴の両方からなる高信頼画像を生成する。
本研究では,あるタスクにおいて最も重要であると考えられる識別的特徴を可視化するための,サリエンシ駆動型アプローチを提案する。
論文 参考訳(メタデータ) (2020-07-31T06:11:06Z) - Selecting Relevant Features from a Multi-domain Representation for
Few-shot Classification [91.67977602992657]
本稿では,従来の特徴適応手法よりもシンプルかつ効果的である特徴選択に基づく新しい戦略を提案する。
このような特徴の上に構築された単純な非パラメトリック分類器は高い精度を示し、訓練中に見たことのない領域に一般化する。
論文 参考訳(メタデータ) (2020-03-20T15:44:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。