論文の概要: Mi{\dh}eind's WMT 2021 submission
- arxiv url: http://arxiv.org/abs/2109.07343v1
- Date: Wed, 15 Sep 2021 14:56:00 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-16 19:02:37.485277
- Title: Mi{\dh}eind's WMT 2021 submission
- Title(参考訳): mi{\dh}eindのwmt 2021の提出
- Authors: Haukur Barri S\'imonarson, V\'esteinn Sn{\ae}bjarnarson, P\'etur Orri
Ragnarsson, Haukur P\'all J\'onsson and Vilhj\'almur {\TH}orsteinsson
- Abstract要約: 我々は、2021年のWMTニュース翻訳タスクの英語$to$Icelandicおよびアイスランド$to$Englishサブセットに対するMidheindの提出を提示する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present Mi{\dh}eind's submission for the English$\to$Icelandic and
Icelandic$\to$English subsets of the 2021 WMT news translation task.
Transformer-base models are trained for translation on parallel data to
generate backtranslations iteratively. A pretrained mBART-25 model is then
adapted for translation using parallel data as well as the last backtranslation
iteration. This adapted pretrained model is then used to re-generate
backtranslations, and the training of the adapted model is continued.
- Abstract(参考訳): 我々は2021年のwmtニュース翻訳タスクの英語$\to$icelandic とアイスランド語$\to$ english の部分集合に対する mi{\dh}eind の提出について述べる。
トランスフォーマーベースモデルは並列データの変換のために訓練され、反復的にバックトランスレーションを生成する。
事前訓練されたmBART-25モデルは、最後のバックトランスレーションの繰り返しと同様に、並列データを用いた翻訳に適合する。
この適応事前学習モデルを用いて、逆翻訳を再現し、適応モデルのトレーニングを継続する。
関連論文リスト
- The Effect of Normalization for Bi-directional Amharic-English Neural
Machine Translation [53.907805815477126]
本稿では,比較的大規模なアムハラ語-英語並列文データセットを提案する。
我々は、既存のFacebook M2M100事前学習モデルを微調整することで、双方向のアムハラ語翻訳モデルを構築する。
その結果, 両方向のアンハラ語・英語機械翻訳の性能は, アンハラ語ホモホン文字の正規化により向上することが示唆された。
論文 参考訳(メタデータ) (2022-10-27T07:18:53Z) - The USYD-JD Speech Translation System for IWSLT 2021 [85.64797317290349]
本稿では,シドニー大学とJDが共同でIWSLT 2021低リソース音声翻訳タスクを提出したことを述べる。
私たちは、公式に提供されたASRとMTデータセットでモデルをトレーニングしました。
翻訳性能の向上を目的として, バック翻訳, 知識蒸留, 多機能再構成, トランスダクティブファインタニングなど, 最新の効果的な手法について検討した。
論文 参考訳(メタデータ) (2021-07-24T09:53:34Z) - The NiuTrans End-to-End Speech Translation System for IWSLT 2021 Offline
Task [23.008938777422767]
本稿では,IWSLT 2021オフラインタスクに対して,NuTransのエンドツーエンド音声翻訳システムを提案する。
我々はTransformerベースのモデルアーキテクチャを使用し、Conformer、相対位置符号化、スタックされた音響およびテキスト符号化により拡張する。
我々は MuST-C En-De テストセット上で 33.84 BLEU 点を達成する。
論文 参考訳(メタデータ) (2021-07-06T07:45:23Z) - Continual Mixed-Language Pre-Training for Extremely Low-Resource Neural
Machine Translation [53.22775597051498]
我々は,mbart を未熟な言語に効果的に適用するための,継続的な事前学習フレームワークを提案する。
その結果,mBARTベースラインの微調整性能を一貫して改善できることが示された。
私たちのアプローチは、両方の言語が元のmBARTの事前トレーニングで見られる翻訳ペアのパフォーマンスを高めます。
論文 参考訳(メタデータ) (2021-05-09T14:49:07Z) - Meta Back-translation [111.87397401837286]
プリトレーニングされたバック翻訳モデルから擬似並列データを生成する新しい手法を提案する。
本手法は,生成する擬似並列データに対して,検証セット上で良好な処理を行うためのフォワードトランスレーションモデルを訓練するように,事前訓練されたバックトランスレーションモデルを適用するメタラーニングアルゴリズムである。
論文 参考訳(メタデータ) (2021-02-15T20:58:32Z) - Tilde at WMT 2020: News Task Systems [0.38073142980733]
本稿では、Tilde氏がWMT 2020に投稿した英語とポーランド語の両方の方向のニュース翻訳タスクについて述べる。
我々は,形態的に動機づけたサブワード単位ベースのトランスフォーマーベースモデルとして,ベースラインシステムを構築している。
最終モデルはTransformerベースとTransformerビッグモデルのアンサンブルで、左右に並べ替えられる。
論文 参考訳(メタデータ) (2020-10-29T08:59:37Z) - DiDi's Machine Translation System for WMT2020 [51.296629834996246]
我々は中国語>英語の翻訳指導に参画する。
この方向では、ベースラインモデルとしてTransformerを使用します。
その結果,日英のBLEUスコアは36.6ドルとなった。
論文 参考訳(メタデータ) (2020-10-16T06:25:48Z) - Enhanced back-translation for low resource neural machine translation
using self-training [0.0]
本研究は,後進モデルの出力を用いて前方翻訳手法を用いてモデル自体を改善する自己学習戦略を提案する。
この技術は、ベースラインの低リソースであるIWSLT'14とIWSLT'15をそれぞれ11.06と1.5BLEUに改良することを示した。
改良された英語-ドイツ語の後方モデルによって生成された合成データを用いて前方モデルを訓練し、2.7BLEUで標準の後方翻訳を用いて訓練された別の前方モデルより優れていた。
論文 参考訳(メタデータ) (2020-06-04T14:19:52Z) - Learning Contextualized Sentence Representations for Document-Level
Neural Machine Translation [59.191079800436114]
文書レベルの機械翻訳は、文間の依存関係をソース文の翻訳に組み込む。
本稿では,ニューラルマシン翻訳(NMT)を訓練し,文のターゲット翻訳と周辺文の双方を予測することによって,文間の依存関係をモデル化するフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-30T03:38:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。