論文の概要: Surveying the Research on Fake News in Social Media: a Tale of Networks
and Language
- arxiv url: http://arxiv.org/abs/2109.07909v1
- Date: Mon, 13 Sep 2021 14:10:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-18 13:02:52.754191
- Title: Surveying the Research on Fake News in Social Media: a Tale of Networks
and Language
- Title(参考訳): ソーシャルメディアにおける偽ニュース研究の実態調査--ネットワークと言語の物語
- Authors: Giancarlo Ruffo (1), Alfonso Semeraro (1), Anastasia Giachanou (2),
Paolo Rosso (3) ((1) Universit\`a degli Studi di Torino, (2) Utrecht
University, (3) Universitat Polit\`ecnica de Val\`encia)
- Abstract要約: ジャーナリズムとニュース拡散の歴史は、偽造、誤報、プロパガンダ、未確認の噂、不十分な報道、憎悪と分裂を含むメッセージの排除と密接に結びついている。
オンラインソーシャルメディアの爆発的な成長と、ニュースを消費し、創造し、共有する何十億もの個人によって、この古代の問題は再燃している。
これは多くの研究者が、偽の新規拡散の研究、理解、検出、防止のための新しい方法を開発するきっかけとなった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The history of journalism and news diffusion is tightly coupled with the
effort to dispel hoaxes, misinformation, propaganda, unverified rumours, poor
reporting, and messages containing hate and divisions. With the explosive
growth of online social media and billions of individuals engaged with
consuming, creating, and sharing news, this ancient problem has surfaced with a
renewed intensity threatening our democracies, public health, and news outlets
credibility. This has triggered many researchers to develop new methods for
studying, understanding, detecting, and preventing fake-news diffusion; as a
consequence, thousands of scientific papers have been published in a relatively
short period, making researchers of different disciplines to struggle in search
of open problems and most relevant trends. The aim of this survey is threefold:
first, we want to provide the researchers interested in this multidisciplinary
and challenging area with a network-based analysis of the existing literature
to assist them with a visual exploration of papers that can be of interest;
second, we present a selection of the main results achieved so far adopting the
network as an unifying framework to represent and make sense of data, to model
diffusion processes, and to evaluate different debunking strategies. Finally,
we present an outline of the most relevant research trends focusing on the
moving target of fake-news, bots, and trolls identification by means of data
mining and text technologies; despite scholars working on computational
linguistics and networks traditionally belong to different scientific
communities, we expect that forthcoming computational approaches to prevent
fake news from polluting the social media must be developed using hybrid and
up-to-date methodologies.
- Abstract(参考訳): ジャーナリズムとニュース拡散の歴史は、偽造、誤報、プロパガンダ、未確認の噂、不十分な報道、憎悪と分裂を含むメッセージの排除と密接に結びついている。
オンラインソーシャルメディアの爆発的な成長と何十億もの個人がニュースの消費、作成、共有に携わる中、この古代の問題は、民主主義、公衆衛生、ニュースメディアの信頼性を脅かす新たな強みと共に表面化した。
この結果、多くの研究者が偽ニュースの拡散を研究、理解、検出、防止するための新しい方法を開発し、その結果、何千もの科学論文が比較的短期間に出版され、様々な分野の研究者がオープン問題や最も関連するトレンドを探すのに苦しむようになった。
この調査の目的は3つある: まず、既存の文献をネットワークベースで分析し、興味のある論文を視覚的に探索するのを支援するために、この多分野的かつ挑戦的な分野に関心のある研究者に提供したいと考えている; 次に、ネットワークを統一的なフレームワークとして採用し、データ表現と理解、拡散過程のモデル化、異なる分散戦略の評価を行う。
最後に,データマイニングやテキスト技術による偽ニュース,ボット,トロルの識別の移動を対象とする研究動向について概説する。計算言語学やネットワークの研究は伝統的に異なる科学コミュニティに属するが,フェイクニュースがソーシャルメディアに汚染されることを防止するための今後の計算手法は,ハイブリッドおよび最新手法を用いて開発する必要があると期待する。
関連論文リスト
- A Survey of Stance Detection on Social Media: New Directions and Perspectives [50.27382951812502]
姿勢検出は 感情コンピューティングにおける 重要なサブフィールドとして現れました
近年は、効果的な姿勢検出手法の開発に対する研究の関心が高まっている。
本稿では,ソーシャルメディア上での姿勢検出手法に関する包括的調査を行う。
論文 参考訳(メタデータ) (2024-09-24T03:06:25Z) - An Interactive Framework for Profiling News Media Sources [26.386860411085053]
本稿では,ニュースメディアのプロファイリングのためのインタラクティブなフレームワークを提案する。
グラフベースのニュースメディアプロファイリングモデル、事前訓練された大規模言語モデル、人間の洞察の強みを組み合わせる。
人間のインタラクションが5つにも満たないので、我々のフレームワークはフェイクや偏見のあるニュースメディアを素早く検出できる。
論文 参考訳(メタデータ) (2023-09-14T02:03:45Z) - ManiTweet: A New Benchmark for Identifying Manipulation of News on Social Media [74.93847489218008]
ソーシャルメディア上でのニュースの操作を識別し,ソーシャルメディア投稿の操作を検出し,操作された情報や挿入された情報を特定することを目的とした,新しいタスクを提案する。
この課題を研究するために,データ収集スキーマを提案し,3.6K対のツイートとそれに対応する記事からなるManiTweetと呼ばれるデータセットをキュレートした。
我々の分析では、このタスクは非常に難しいことを示し、大きな言語モデル(LLM)は不満足なパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2023-05-23T16:40:07Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
イタリアのワクチン論争に関する6年間のデータセットを構築し、物語と選択バイアスを特定するためにベイジアン潜在空間モデルを採用する。
バイアスとエンゲージメントの間に非線形な関係が見られ、極端な位置へのエンゲージメントが高くなった。
Twitter上でのニュース消費の分析は、同様のイデオロギー的な立場のニュースメディアの間で、一般的なオーディエンスを明らかにしている。
論文 参考訳(メタデータ) (2023-01-14T18:58:42Z) - Entropy-rate as prediction method for newspapers and information
diffusion [0.0]
本稿は,オンライン新聞の視聴率を予測するために,ソーシャルネットワーク上で人気トピックがいかに利用されているかを示すものである。
本研究は,エントロピーレート,ダイナミックス,適切な情報拡散性能をソーシャルネットワークおよび新聞上で期待する課題に対処するものである。
論文 参考訳(メタデータ) (2022-11-29T10:00:54Z) - A Review of Web Infodemic Analysis and Detection Trends across
Multi-modalities using Deep Neural Networks [3.42658286826597]
フェイクニュース検出は最も分析され、顕著な研究分野の1つである。
Facebook、Reddit、WhatsApp、YouTube、その他のソーシャルアプリケーションは、この新興分野で徐々に注目を集めている。
このレビューは主に、画像、ビデオ、およびそれらのテキストの組み合わせを含むマルチモーダルフェイクニュース検出技術を扱う。
論文 参考訳(メタデータ) (2021-11-23T16:02:28Z) - A Study of Fake News Reading and Annotating in Social Media Context [1.0499611180329804]
我々は、44名のレイト参加者に、ニュース記事を含む投稿を含むソーシャルメディアフィードをさりげなく読み取らせるという、視線追跡研究を提示した。
第2回では,参加者に対して,これらの記事の真偽を判断するよう求めた。
また、同様のシナリオを用いたフォローアップ定性的な研究についても述べるが、今回は7人の専門家によるフェイクニュースアノテータを用いた。
論文 参考訳(メタデータ) (2021-09-26T08:11:17Z) - SOK: Fake News Outbreak 2021: Can We Stop the Viral Spread? [5.64512235559998]
ソーシャルネットワークの完全解釈と使いやすさは、今日の世界での情報の生成と配布に革命をもたらした。
従来のメディアチャンネルとは異なり、ソーシャルネットワークは偽情報や偽情報の拡散を迅速かつ広範囲に促進する。
虚偽情報の拡散は、大衆の行動、態度、信念に深刻な影響を及ぼす。
論文 参考訳(メタデータ) (2021-05-22T09:26:13Z) - Detecting Cross-Modal Inconsistency to Defend Against Neural Fake News [57.9843300852526]
我々は、画像やキャプションを含む機械生成ニュースに対して、より現実的で挑戦的な対策を導入する。
敵が悪用できる可能性のある弱点を特定するために、4つの異なる種類の生成された記事からなるNeuralNewsデータセットを作成します。
ユーザ実験から得られた貴重な知見に加えて,視覚的意味的不整合の検出にもとづく比較的効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-16T14:13:15Z) - Leveraging Multi-Source Weak Social Supervision for Early Detection of
Fake News [67.53424807783414]
ソーシャルメディアは、人々が前例のない速度でオンライン活動に参加することを可能にする。
この制限のないアクセスは、誤情報や偽ニュースの拡散を悪化させ、その緩和のために早期に検出されない限り混乱と混乱を引き起こす可能性がある。
ソーシャルエンゲージメントからの弱い信号とともに、限られた量のクリーンデータを活用して、メタラーニングフレームワークでディープニューラルネットワークをトレーニングし、さまざまな弱いインスタンスの品質を推定します。
実世界のデータセットの実験では、提案されたフレームワークは、予測時にユーザーエンゲージメントを使わずに、フェイクニュースを早期に検出するための最先端のベースラインを上回っている。
論文 参考訳(メタデータ) (2020-04-03T18:26:33Z) - Mining Disinformation and Fake News: Concepts, Methods, and Recent
Advancements [55.33496599723126]
偽ニュースを含む偽ニュースは 爆発的な成長により グローバルな現象になっています
偽情報や偽ニュースを検知する最近の進歩にもかかわらず、その複雑さ、多様性、多様性、事実チェックやアノテーションのコストが原因で、いまだに自明ではない。
論文 参考訳(メタデータ) (2020-01-02T21:01:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。