論文の概要: Entropy-rate as prediction method for newspapers and information
diffusion
- arxiv url: http://arxiv.org/abs/2212.01361v1
- Date: Tue, 29 Nov 2022 10:00:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-19 12:49:45.032875
- Title: Entropy-rate as prediction method for newspapers and information
diffusion
- Title(参考訳): 新聞の予測方法としてのエントロピーレートと情報拡散
- Authors: Andrea Russo, Antonio Picone, Vincenzo Miracula, Giovanni Giuffrida,
Francesco Mazzeo Rinaldi
- Abstract要約: 本稿は,オンライン新聞の視聴率を予測するために,ソーシャルネットワーク上で人気トピックがいかに利用されているかを示すものである。
本研究は,エントロピーレート,ダイナミックス,適切な情報拡散性能をソーシャルネットワークおよび新聞上で期待する課題に対処するものである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper aims to show how some popular topics on social networks can be
used to predict online newspaper views, related to the topics. Newspapers site
and many social networks, become a good source of data to analyse and explain
complex phenomena. Understanding the entropy of a topic, could help all
organizations that need to share information like government, institution,
newspaper or company, to expect an higher activity over their channels, and in
some cases predict what the receiver expect from the senders or what is wrong
about the communication. For some organization such political party, leaders,
company and many others, the reputation and the communication are (for most of
them) the key part of a more and complex huge system. To reach our goal, we use
gathering tools and information theory to detect and analyse trends topic on
social networks, with the purpose of proved a method that helps organization,
newspapers to predict how many articles or communication they will have to do
on a topic, and how much flow of views they will have in a given period,
starting with the entropy-article ratio. Our work address the issue to explore
in which entropy-rate, and through which dynamics, a suitable information
diffusion performance is expected on social network and then on newspaper. We
have identified some cross-cutting dynamics that, associated with the contexts,
might explain how people discuss about a topic, can move on to argue and
informs on newspapers sites.
- Abstract(参考訳): 本論文は,ソーシャルネットワーク上の人気トピックが,オンライン新聞の視点をどう予測できるかを示すものである。
新聞サイトや多くのソーシャルネットワークは、複雑な現象を分析し説明するためのデータ源となっている。
トピックのエントロピーを理解することで、政府、機関、新聞、企業といった情報を共有する必要のあるすべての組織は、チャネル上でより高いアクティビティを期待でき、場合によっては受信者が送信者に対して何を期待しているか、コミュニケーションに何が間違っているのかを予測することができる。
そのような政党、リーダー、会社、その他多くの組織にとって、評判とコミュニケーションは(彼らにとって)より複雑で複雑な巨大システムの重要な部分です。
目的を達成するために,我々は収集ツールと情報理論を用いて,ソーシャルネットワーク上のトレンドトピックを検出し,分析する。この手法は,組織や新聞が,トピック上で行うべき記事やコミュニケーションの数を予測し,エントロピーとアーティクルの比率から始めて,特定の期間にどれだけのビューを得られるかを予測するのに役立つ。
本研究は,エントロピーレート,ダイナミックス,適切な情報拡散性能をソーシャルネットワークおよび新聞上で期待する課題に対処するものである。
我々は,その話題について人々がどのように議論し,議論し,新聞サイトで情報を伝えるかを説明する,横断的ダイナミクスを特定した。
関連論文リスト
- Time Series Analysis of Key Societal Events as Reflected in Complex
Social Media Data Streams [0.9790236766474201]
本研究では,ニッチなソーシャルメディアプラットフォームであるGABと,確立されたメッセージングサービスであるTelegramの物語進化について検討する。
我々のアプローチは、複数のソーシャルメディアドメインを調査し、他の方法では見えない重要な情報を排除するための新しいモードである。
主な知見は,(1) 時間線をデコンストラクトして, 解釈を改善するための有用なデータ機能を提供すること,(2) 一般化の基盤を提供する方法論を適用すること,である。
論文 参考訳(メタデータ) (2024-03-11T18:33:56Z) - Social Convos: Capturing Agendas and Emotions on Social Media [1.6385815610837167]
本稿では,特定のトピックを議論するユーザのグループ間を循環するメッセージから,影響指標を抽出する手法を提案する。
我々は、アジェンダ(制御)と感情言語の使用の2つの影響指標に焦点を当てる。
論文 参考訳(メタデータ) (2024-02-23T19:14:09Z) - Prompt-and-Align: Prompt-Based Social Alignment for Few-Shot Fake News
Detection [50.07850264495737]
プロンプト・アンド・アライン(Prompt-and-Align、P&A)は、数発のフェイクニュース検出のための新しいプロンプトベースのパラダイムである。
我々はP&Aが、数発のフェイクニュース検出性能をかなりのマージンで新たな最先端に設定していることを示す。
論文 参考訳(メタデータ) (2023-09-28T13:19:43Z) - ManiTweet: A New Benchmark for Identifying Manipulation of News on Social Media [74.93847489218008]
ソーシャルメディア上でのニュースの操作を識別し,ソーシャルメディア投稿の操作を検出し,操作された情報や挿入された情報を特定することを目的とした,新しいタスクを提案する。
この課題を研究するために,データ収集スキーマを提案し,3.6K対のツイートとそれに対応する記事からなるManiTweetと呼ばれるデータセットをキュレートした。
我々の分析では、このタスクは非常に難しいことを示し、大きな言語モデル(LLM)は不満足なパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2023-05-23T16:40:07Z) - EDSA-Ensemble: an Event Detection Sentiment Analysis Ensemble
Architecture [63.85863519876587]
Sentiment Analysisを使って、イベントに属する各メッセージの極性やイベント全体を理解することで、オンラインソーシャルネットワークにおける重要なトレンドやダイナミクスに関する一般的な感情や個人の感情をよりよく理解することができます。
本研究では,ソーシャルメディアから現在起きているイベントの極性検出を改善するために,イベント検出と知覚分析を用いた新しいアンサンブルアーキテクチャEDSA-Ensembleを提案する。
論文 参考訳(メタデータ) (2023-01-30T11:56:08Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
イタリアのワクチン論争に関する6年間のデータセットを構築し、物語と選択バイアスを特定するためにベイジアン潜在空間モデルを採用する。
バイアスとエンゲージメントの間に非線形な関係が見られ、極端な位置へのエンゲージメントが高くなった。
Twitter上でのニュース消費の分析は、同様のイデオロギー的な立場のニュースメディアの間で、一般的なオーディエンスを明らかにしている。
論文 参考訳(メタデータ) (2023-01-14T18:58:42Z) - Surveying the Research on Fake News in Social Media: a Tale of Networks
and Language [0.0]
ジャーナリズムとニュース拡散の歴史は、偽造、誤報、プロパガンダ、未確認の噂、不十分な報道、憎悪と分裂を含むメッセージの排除と密接に結びついている。
オンラインソーシャルメディアの爆発的な成長と、ニュースを消費し、創造し、共有する何十億もの個人によって、この古代の問題は再燃している。
これは多くの研究者が、偽の新規拡散の研究、理解、検出、防止のための新しい方法を開発するきっかけとなった。
論文 参考訳(メタデータ) (2021-09-13T14:10:44Z) - Analysing Social Media Network Data with R: Semi-Automated Screening of
Users, Comments and Communication Patterns [0.0]
ソーシャルメディアプラットフォーム上でのコミュニケーションは、社会に広まりつつある。
フェイクニュース、ヘイトスピーチ、急進的要素は、この現代的なコミュニケーションの一部です。
これらのメカニズムとコミュニケーションパターンの基本的な理解は、負のコミュニケーション形態に対抗するのに役立つ。
論文 参考訳(メタデータ) (2020-11-26T14:52:01Z) - Echo Chambers on Social Media: A comparative analysis [64.2256216637683]
本研究では,4つのソーシャルメディアプラットフォーム上で100万ユーザが生成した100万個のコンテンツに対して,エコーチャンバーの操作的定義を導入し,大規模な比較分析を行う。
議論の的になっているトピックについてユーザの傾きを推測し、異なる特徴を分析してインタラクションネットワークを再構築する。
我々は、Facebookのようなニュースフィードアルゴリズムを実装するプラットフォームが、エコーチャンバの出現を招きかねないという仮説を支持する。
論文 参考訳(メタデータ) (2020-04-20T20:00:27Z) - A network perspective on intermedia agenda-setting [4.83420384410068]
我々は、あるトピックに対して異なるニュースソース間の影響のネットワークを推論する方法論を提示することで、メディア間アジェンダ設定を運用する。
同じニュースソースが特定のトピックに対してアジェンダ・セッターとして機能し、他のトピックに対してフォロワーとして機能する。
同時に、ほとんどのトピックに関連する影響ネットワークは、小さな世界特性を示しており、ネットワーク内のニュースソースによって表現される感情の全体的多様性に重要な役割を担っていることがわかった。
論文 参考訳(メタデータ) (2020-02-14T11:27:16Z) - I Know Where You Are Coming From: On the Impact of Social Media Sources
on AI Model Performance [79.05613148641018]
我々は、異なるソーシャルネットワークのマルチモーダルデータから学習する際、異なる機械学習モデルの性能について検討する。
最初の実験結果から,ソーシャルネットワークの選択がパフォーマンスに影響を及ぼすことが明らかとなった。
論文 参考訳(メタデータ) (2020-02-05T11:10:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。