論文の概要: Syntactic Requirements for Well-defined Hybrid Probabilistic Logic
Programs
- arxiv url: http://arxiv.org/abs/2109.08283v1
- Date: Fri, 17 Sep 2021 01:45:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-21 05:30:31.932639
- Title: Syntactic Requirements for Well-defined Hybrid Probabilistic Logic
Programs
- Title(参考訳): 高度に定義されたハイブリッド確率論理プログラムの構文要求
- Authors: Damiano Azzolini, Fabrizio Riguzzi
- Abstract要約: ハイブリッド確率論理プログラムは、離散的かつ連続的な分布を表す事実で拡張された論理プログラミングの表現性のおかげで、いくつかのシナリオを表現できる。
ここでは、最近のセマンティクスの提案に続いて、具体的構文を説明し、明確に定義された状態を維持するのに必要な構文的要求を分析する。
- 参考スコア(独自算出の注目度): 0.5076419064097734
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hybrid probabilistic logic programs can represent several scenarios thanks to
the expressivity of Logic Programming extended with facts representing discrete
and continuous distributions. The semantics for this type of programs is
crucial since it ensures that a probability can be assigned to every query.
Here, following one recent semantics proposal, we illustrate a concrete syntax,
and we analyse the syntactic requirements needed to preserve the
well-definedness.
- Abstract(参考訳): ハイブリッド確率論理プログラムは、離散的かつ連続的な分布を表す事実で拡張された論理プログラミングの表現性のおかげで、いくつかのシナリオを表現できる。
このタイプのプログラムのセマンティクスは、全てのクエリに確率を割り当てることを保証するため、非常に重要である。
ここでは,最近の意味論の提案に従って,具体的構文を説明し,その定義性を維持するために必要な構文的要件を分析する。
関連論文リスト
- Symbolic Parameter Learning in Probabilistic Answer Set Programming [0.16385815610837165]
本稿では,確率的集合プログラミングの形式化を解くための2つのアルゴリズムを提案する。
第一に、オフザシェルフ制約最適化ソルバを用いてタスクを解く。
2つ目は期待最大化アルゴリズムの実装に基づいている。
論文 参考訳(メタデータ) (2024-08-16T13:32:47Z) - The Foundations of Tokenization: Statistical and Computational Concerns [51.370165245628975]
トークン化は、NLPパイプラインにおける重要なステップである。
NLPにおける標準表現法としての重要性は認識されているが、トークン化の理論的基盤はまだ完全には理解されていない。
本稿では,トークン化モデルの表現と解析のための統一的な形式的枠組みを提案することによって,この理論的ギャップに対処することに貢献している。
論文 参考訳(メタデータ) (2024-07-16T11:12:28Z) - $\omega$PAP Spaces: Reasoning Denotationally About Higher-Order,
Recursive Probabilistic and Differentiable Programs [64.25762042361839]
$omega$PAP 空間は表現的微分可能および確率的プログラミング言語についての推論のための空間である。
我々の意味論は、最も実践的な確率的で微分可能なプログラムに意味を割り当てるのに十分である。
確率プログラムのトレース密度関数のほぼすべての微分可能性を確立する。
論文 参考訳(メタデータ) (2023-02-21T12:50:05Z) - The generalised distribution semantics and projective families of distributions [0.0]
本稿では,確率論的論理プログラミングの基盤となる分布意味論を,その本質的な概念,自由乱数成分と決定論的部分の分離によって一般化する。
これは、確率的データベース、確率的有限モデル理論、離散化されたベイズネットワークからフレームワークを包含する論理プログラミング以外の中核的な考えを抽象化する。
論文 参考訳(メタデータ) (2022-11-12T21:44:22Z) - Semantic Probabilistic Layers for Neuro-Symbolic Learning [83.25785999205932]
我々は構造化出力予測(SOP)のための予測層を設計する。
予測が事前に定義されたシンボリック制約のセットと一致していることを保証するため、任意のニューラルネットワークにプラグインすることができる。
我々のセマンティック確率層(SPL)は、構造化された出力空間上で複雑な相関や制約をモデル化することができる。
論文 参考訳(メタデータ) (2022-06-01T12:02:38Z) - Distributional Gradient Boosting Machines [77.34726150561087]
私たちのフレームワークはXGBoostとLightGBMをベースにしています。
我々は,このフレームワークが最先端の予測精度を実現することを示す。
論文 参考訳(メタデータ) (2022-04-02T06:32:19Z) - SMProbLog: Stable Model Semantics in ProbLog and its Applications in
Argumentation [17.71804768917815]
SMProbLogは確率論理プログラミング言語ProbLogの一般化である。
本稿では,SMProbLogを用いて確率論的議論問題を解き明かす方法について述べる。
論文 参考訳(メタデータ) (2021-10-05T12:29:22Z) - Logical Credal Networks [87.25387518070411]
本稿では,論理と確率を組み合わせた先行モデルの多くを一般化した表現的確率論的論理である論理的クレダルネットワークを紹介する。
本稿では,不確実性のあるマスターミンドゲームを解くこと,クレジットカード詐欺を検出することを含む,最大後部推論タスクの性能について検討する。
論文 参考訳(メタデータ) (2021-09-25T00:00:47Z) - An asymptotic analysis of probabilistic logic programming with
implications for expressing projective families of distributions [0.0]
分布意味論に基づく全ての確率論理プログラムは確率論理プログラムと関係論的に等価であることを示す。
範囲制限論理プログラムは、量子化子フリーな理論に対応し、量子化子結果が有用である。
論文 参考訳(メタデータ) (2021-02-17T14:07:16Z) - Representing Partial Programs with Blended Abstract Semantics [62.20775388513027]
プログラム合成エンジンにおける部分的なプログラム表現手法について紹介する。
モジュラーニューラルネットワークとして実装された近似実行モデルを学ぶ。
これらのハイブリッドニューロシンボリック表現は、実行誘導型シンセサイザーがより強力な言語構成を使うことができることを示す。
論文 参考訳(メタデータ) (2020-12-23T20:40:18Z) - Stochastic Probabilistic Programs [1.90365714903665]
本稿では,確率的プログラムの概念を導入し,プログラムの仕様と推論を支援する確率的プログラミング施設のリファレンス実装を提案する。
確率プログラムのいくつかの例を示し、モデル仕様と推論の観点から、決定論的確率プログラムと対応する決定論的確率プログラムを比較した。
論文 参考訳(メタデータ) (2020-01-08T17:54:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。