論文の概要: Autonomous Vision-based UAV Landing with Collision Avoidance using Deep
Learning
- arxiv url: http://arxiv.org/abs/2109.08628v1
- Date: Fri, 17 Sep 2021 16:16:51 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-20 16:53:39.352387
- Title: Autonomous Vision-based UAV Landing with Collision Avoidance using Deep
Learning
- Title(参考訳): ディープラーニングを用いた自律視覚に基づく衝突回避型uav着陸
- Authors: Tianpei Liao, Amal Haridevan, Yibo Liu, Jinjun Shan
- Abstract要約: 複数のUAVが同じプラットフォーム上で通信することなく同時に着陸する際に衝突するリスクがある。
この研究は、視覚に基づく自律着陸を実現し、深層学習に基づく手法を用いて着陸過程における衝突回避を実現する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There is a risk of collision when multiple UAVs land simultaneously without
communication on the same platform. This work accomplishes vision-based
autonomous landing and uses a deep-learning-based method to realize collision
avoidance during the landing process.
- Abstract(参考訳): 複数のUAVが同じプラットフォーム上で通信することなく同時に着陸する際に衝突するリスクがある。
この研究は、視覚に基づく自律着陸を実現し、深層学習に基づく手法を用いて着陸過程における衝突回避を実現する。
関連論文リスト
- Evaluation of Safety Constraints in Autonomous Navigation with Deep
Reinforcement Learning [62.997667081978825]
学習可能なナビゲーションポリシとして,セーフとアンセーフの2つを比較します。
安全なポリシは、制約をアカウントに含めますが、もう一方はそうではありません。
安全政策は、よりクリアランスの高い軌道を生成することができ(障害物によらず)、全体的な性能を犠牲にすることなく、トレーニング中に衝突を減らすことができることを示す。
論文 参考訳(メタデータ) (2023-07-27T01:04:57Z) - Joint Path planning and Power Allocation of a Cellular-Connected UAV
using Apprenticeship Learning via Deep Inverse Reinforcement Learning [7.760962597460447]
本稿では,郊外環境におけるセルラー接続型無人航空機(UAV)の干渉対応共同経路計画と電力配分機構について検討する。
UAVは、そのアップリンクスループットを最大化し、近隣のBSに接続された地上ユーザ機器(UE)への干渉のレベルを最小化することを目的としている。
Q-learning と深層強化学習 (DRL) を併用した逆強化学習 (IRL) による見習い学習手法
論文 参考訳(メタデータ) (2023-06-15T20:50:05Z) - Object Detection and Tracking with Autonomous UAV [0.3044887242295643]
回転翼UAVは、目標のロック、追跡、関連するデータを周囲の車両と共有するといった様々な作業に成功している。
API通信、地上局の設定、自律移動アルゴリズム、コンピュータビジョン、ディープラーニングといった様々なソフトウェア技術が採用されている。
論文 参考訳(メタデータ) (2022-06-26T18:48:59Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
フェデレーテッド・ラーニング・パワード・コネクテッド・オートモービル(FLCAV)が提案されている。
FLCAVは通信とアノテーションのコストを削減しながらプライバシを保存する。
マルチステージトレーニングのためのネットワークリソースと道路センサのポーズを決定することは困難である。
論文 参考訳(メタデータ) (2022-06-03T23:55:45Z) - Differentiable Control Barrier Functions for Vision-based End-to-End
Autonomous Driving [100.57791628642624]
本稿では,視覚に基づくエンドツーエンド自動運転のための安全保証学習フレームワークを提案する。
我々は、勾配降下によりエンドツーエンドに訓練された微分制御バリア関数(dCBF)を備えた学習システムを設計する。
論文 参考訳(メタデータ) (2022-03-04T16:14:33Z) - Learning Interactive Driving Policies via Data-driven Simulation [125.97811179463542]
データ駆動シミュレータは、ポリシー学習の駆動に高いデータ効率を約束する。
小さな基盤となるデータセットは、インタラクティブな運転を学ぶための興味深い、挑戦的なエッジケースを欠いていることが多い。
本研究では,ロバストな運転方針の学習に塗装されたアドカーを用いたシミュレーション手法を提案する。
論文 参考訳(メタデータ) (2021-11-23T20:14:02Z) - Using UAVs for vehicle tracking and collision risk assessment at
intersections [2.090380922731455]
本研究は、道路利用者の移動を追跡し、交差点での衝突の可能性を評価するために、UAVとV2X接続の適用を実証する。
提案手法は,ディープラーニングに基づくトラッキングアルゴリズムと時間対衝突タスクを組み合わせたものである。
論文 参考訳(メタデータ) (2021-10-11T19:38:24Z) - Interpretable UAV Collision Avoidance using Deep Reinforcement Learning [1.2693545159861856]
自己注意モデルを用いた深部強化学習を用いた自律型UAV飛行を提案する。
気象や環境によってアルゴリズムをテストした結果,従来のDeep Reinforcement Learningアルゴリズムと比較して頑健であることが判明した。
論文 参考訳(メタデータ) (2021-05-25T23:21:54Z) - Attention-based Reinforcement Learning for Real-Time UAV Semantic
Communication [53.46235596543596]
移動地利用者に対する空対地超信頼性・低遅延通信(URLLC)の問題点について検討する。
グラフアテンション交換ネットワーク(GAXNet)を用いたマルチエージェント深層強化学習フレームワークを提案する。
GAXNetは、最先端のベースラインフレームワークと比較して、0.0000001エラー率で6.5倍のレイテンシを実現している。
論文 参考訳(メタデータ) (2021-05-22T12:43:25Z) - Physically Realizable Adversarial Examples for LiDAR Object Detection [72.0017682322147]
本稿では,LiDAR検出器を騙すために,汎用な3次元対向物体を生成する手法を提案する。
特に,LiDAR検出器から車両を完全に隠蔽するために,車両の屋根上に対向物体を配置し,その成功率は80%であることを示した。
これは、限られたトレーニングデータから見知らぬ条件下での、より安全な自動運転への一歩だ。
論文 参考訳(メタデータ) (2020-04-01T16:11:04Z) - Autonomous UAV Navigation: A DDPG-based Deep Reinforcement Learning
Approach [1.552282932199974]
深層強化学習を用いた自律型UAV経路計画フレームワークを提案する。
目的は、自力で訓練されたUAVを空飛ぶ移動体ユニットとして使用し、空間的に分散した移動または静的な目標に到達することである。
論文 参考訳(メタデータ) (2020-03-21T19:33:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。