The rovibrational Aharonov-Bohm effect
- URL: http://arxiv.org/abs/2109.10185v1
- Date: Tue, 21 Sep 2021 13:59:46 GMT
- Title: The rovibrational Aharonov-Bohm effect
- Authors: Jonathan I. Rawlinson, Csaba F\'abri and Attila G. Cs\'asz\'ar
- Abstract summary: The overall rotation of a symmetric-top molecule influences the dynamics of an internal vibrational motion.
The low-energy rovibrational energy-level structure of the quasistructural molecular ion H5+ can be understood entirely in terms of this effect.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Another manifestation of the Aharonov-Bohm effect is introduced to chemistry,
in fact to nuclear dynamics and high-resolution molecular spectroscopy. As
demonstrated, the overall rotation of a symmetric-top molecule influences the
dynamics of an internal vibrational motion in a way that is analogous to the
presence of a solenoid carrying magnetic flux. To a good approximation, the
low-energy rovibrational energy-level structure of the quasistructural
molecular ion H5+ can be understood entirely in terms of this effect.
Related papers
- The manifestations of 'l-Doubling' in gas-phase rotational dynamics [0.0]
The 'l-Doubling' phenomenon emanates from the coupling between molecular rotations and perpendicular vibrations (bending modes) in polyatomic molecules.
Here we explore and unveil the ramifications of 'l-Doubling' to the coherent rotational dynamics of triatomic molecules at ambient temperatures and above.
The observed 'l-Doubling' dynamics may be wrongly considered as collisional decay throughout the first few hundreds of picoseconds past excitation.
arXiv Detail & Related papers (2024-10-09T10:32:26Z) - Molecular influence on nuclear-quadrupole-coupling effects in laser induced alignment [0.0]
We studied the effect of nuclear-quadrupole interactions on the field-free impulsive alignment of different asymmetric-top molecules.
The impact of the quadrupole coupling on the rotational dynamics decreases when highly excited rotational states dominate the dynamics.
arXiv Detail & Related papers (2024-08-02T09:07:25Z) - Semiclassical truncated-Wigner-approximation theory of
molecular-vibration-polariton dynamics in optical cavities [0.0]
We develop here the semiclassical theory of molecular-vibration-polariton dynamics based on the truncated Wigner approximation (TWA)
The validity of TWA is examined by comparing it with the fully quantum dynamics of a single-molecule system.
The collective and resonance effects of molecular-vibration-polariton formation on the nuclear dynamics are observed in a system of many molecules.
arXiv Detail & Related papers (2023-11-14T01:06:22Z) - Quantum dynamics of molecular ensembles coupled with quantum light:
Counter-rotating interactions as an essential component [0.0]
We study the impact of the rotating-wave approximation on the quantum dynamics of multiple molecules.
In the near-field zone, the reduction of inter-molecule interaction can reach up to 50 percent.
It is revealed that the rotating-wave approximation can profoundly affect the dynamics of the molecules in both strong and weak coupling regimes.
arXiv Detail & Related papers (2023-07-27T06:38:44Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades.
We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor.
For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor.
arXiv Detail & Related papers (2022-09-28T12:56:15Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - The chemical effect goes resonant -- a full quantum mechanical approach
on TERS [0.0]
Experimental evidence of unexpectedly high spatial resolution of tip-enhanced Raman scattering (TERS) has been demonstrated.
We consider a surface-immobilized tin(II) phthalocyanine molecule as the molecular system, which is minutely scanned by a plasmonic tip.
Our computational approach reveals that unique - non-resonant and resonant - chemical interactions among the tip and the molecule significantly alter the TERS spectra.
arXiv Detail & Related papers (2021-06-21T12:53:08Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Effects of the dynamical magnetization state on spin transfer [68.8204255655161]
We show that the complex interactions between the spin-polarized electrons and the dynamical states of the local spins can be decomposed into separate processes.
Our results suggest that exquisite control of spin transfer efficiency and of the resulting dynamical magnetization states may be achievable.
arXiv Detail & Related papers (2021-01-21T22:12:03Z) - Effects of Conical Intersections on Hyperfine Quenching of Hydroxyl OH
in collision with an ultracold Sr atom [62.60678272919008]
We report on ultracold collision dynamics of the hydroxyl free-radical OH with Sr atoms leading to quenching of OH hyperfine states.
Our quantum-mechanical calculations of this process reveal that quenching is efficient due to anomalous molecular dynamics in the vicinity of the conical intersection.
arXiv Detail & Related papers (2020-06-26T23:27:25Z) - Dynamical Strengthening of Covalent and Non-Covalent Molecular
Interactions by Nuclear Quantum Effects at Finite Temperature [58.999762016297865]
Nuclear quantum effects (NQE) tend to generate delocalized molecular dynamics.
NQE often enhance electronic interactions and, in turn, can result in dynamical molecular stabilization at finite temperature.
Our findings yield new insights into the versatile role of nuclear quantum fluctuations in molecules and materials.
arXiv Detail & Related papers (2020-06-18T14:30:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.