Molecular influence on nuclear-quadrupole-coupling effects in laser induced alignment
- URL: http://arxiv.org/abs/2408.01125v1
- Date: Fri, 2 Aug 2024 09:07:25 GMT
- Title: Molecular influence on nuclear-quadrupole-coupling effects in laser induced alignment
- Authors: Linda V. Thesing, Andrey Yachmenev, Rosario González-Férez, Jochen Küpper,
- Abstract summary: We studied the effect of nuclear-quadrupole interactions on the field-free impulsive alignment of different asymmetric-top molecules.
The impact of the quadrupole coupling on the rotational dynamics decreases when highly excited rotational states dominate the dynamics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We studied the effect of nuclear-quadrupole interactions on the field-free impulsive alignment of different asymmetric-top molecules. Our analysis is focused on the influence of the hyperfine- and rotational-energy-level structures. These depend on the number of nuclear spins, the rotational constants, and the symmetry of the tensors involved in the nuclear spin and external field interactions. Comparing the prototypical large-nuclear-spin molecules iodobenzene, 1,2-diiodobenzene, 1,3-diiodobenzene, and 2,5-diiodobenzonitrile, we demonstrate that the magnitude of the hyperfine splittings compared to the rotational-energy splittings plays a crucial role in the spin-rotational dynamics after the laser pulse. Moreover, we point out that the impact of the quadrupole coupling on the rotational dynamics decreases when highly excited rotational states dominate the dynamics.
Related papers
- The manifestations of 'l-Doubling' in gas-phase rotational dynamics [0.0]
The 'l-Doubling' phenomenon emanates from the coupling between molecular rotations and perpendicular vibrations (bending modes) in polyatomic molecules.
Here we explore and unveil the ramifications of 'l-Doubling' to the coherent rotational dynamics of triatomic molecules at ambient temperatures and above.
The observed 'l-Doubling' dynamics may be wrongly considered as collisional decay throughout the first few hundreds of picoseconds past excitation.
arXiv Detail & Related papers (2024-10-09T10:32:26Z) - Chirality-induced emergent spin-orbit coupling in topological atomic
lattices [0.0]
We show that photonic excitations in pseudospin-1/2 atomic lattices exhibit an emergent spin-orbit coupling when the geometry is chiral.
Our results demonstrate that chiral atom arrays are a robust platform for realizing spin-orbit coupled topological states of matter.
arXiv Detail & Related papers (2023-11-15T19:00:13Z) - Spin-orbit torque on nuclear spins exerted by a spin accumulation via
hyperfine interactions [49.1574468325115]
This article demonstrates that the hyperfine coupling, which consists of Fermi contact and dipolar interactions, can mediate the application of spin-orbit torques acting on nuclear spins.
The reactions to the equilibrium and nonequilibrium components of the spin density is a torque on the nucleus with field-like and damping-like components.
This nuclear spin-orbit torque is a step toward stabilizing and controlling nuclear magnetic momenta, in magnitude and direction, and realizing nuclear spintronics.
arXiv Detail & Related papers (2023-05-21T08:05:23Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Driven dynamics of a quantum dot electron spin coupled to bath of
higher-spin nuclei [0.0]
We study the interplay of optical driving and hyperfine interaction between an electron confined in a quantum dot and its surrounding nuclear spin environment.
We find that while hyperfine interactions drive dynamic nuclear polarization and mode-locking, quadrupolar couplings counteract these effects.
arXiv Detail & Related papers (2020-12-14T03:00:18Z) - Dynamical Strengthening of Covalent and Non-Covalent Molecular
Interactions by Nuclear Quantum Effects at Finite Temperature [58.999762016297865]
Nuclear quantum effects (NQE) tend to generate delocalized molecular dynamics.
NQE often enhance electronic interactions and, in turn, can result in dynamical molecular stabilization at finite temperature.
Our findings yield new insights into the versatile role of nuclear quantum fluctuations in molecules and materials.
arXiv Detail & Related papers (2020-06-18T14:30:29Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.