論文の概要: Exploiting Curriculum Learning in Unsupervised Neural Machine
Translation
- arxiv url: http://arxiv.org/abs/2109.11177v1
- Date: Thu, 23 Sep 2021 07:18:06 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-24 15:05:06.190020
- Title: Exploiting Curriculum Learning in Unsupervised Neural Machine
Translation
- Title(参考訳): 教師なしニューラルネットワーク翻訳におけるカリキュラム学習
- Authors: Jinliang Lu and Jiajun Zhang
- Abstract要約: 複数の粒度から擬似バイテキストを徐々に活用するカリキュラム学習手法を提案する。
WMT 14 En-Fr, WMT 16 En-De, WMT 16 En-Ro, LDC En-Zh 翻訳タスクの実験結果から,提案手法はより高速な収束速度で一貫した改善を実現することが示された。
- 参考スコア(独自算出の注目度): 28.75229367700697
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Back-translation (BT) has become one of the de facto components in
unsupervised neural machine translation (UNMT), and it explicitly makes UNMT
have translation ability. However, all the pseudo bi-texts generated by BT are
treated equally as clean data during optimization without considering the
quality diversity, leading to slow convergence and limited translation
performance. To address this problem, we propose a curriculum learning method
to gradually utilize pseudo bi-texts based on their quality from multiple
granularities. Specifically, we first apply cross-lingual word embedding to
calculate the potential translation difficulty (quality) for the monolingual
sentences. Then, the sentences are fed into UNMT from easy to hard batch by
batch. Furthermore, considering the quality of sentences/tokens in a particular
batch are also diverse, we further adopt the model itself to calculate the
fine-grained quality scores, which are served as learning factors to balance
the contributions of different parts when computing loss and encourage the UNMT
model to focus on pseudo data with higher quality. Experimental results on WMT
14 En-Fr, WMT 16 En-De, WMT 16 En-Ro, and LDC En-Zh translation tasks
demonstrate that the proposed method achieves consistent improvements with
faster convergence speed.
- Abstract(参考訳): バックトランスレーション (BT) はunsupervised neural machine translation (UNMT) において事実上の構成要素の一つとなり、UNMTに翻訳能力を持たせる。
しかし、bt が生成する疑似 bi-text はすべて、品質の多様性を考慮せずに、最適化時にクリーンデータとして扱われ、収束が遅く翻訳性能が制限される。
この問題に対処するために,複数の粒度から擬似バイテキストを徐々に活用するカリキュラム学習手法を提案する。
具体的には、まず言語間単語埋め込みを適用し、単言語文の翻訳困難度(品質)を計算する。
そして、文章は、バッチごとに、簡単から硬いバッチからUNMTに送られます。
さらに、特定のバッチにおける文/ケンの質も多様であり、さらに、計算損失時の異なる部分の貢献のバランスをとるための学習要因として提供される細粒度品質スコアを計算し、unmtモデルに高品質な擬似データに焦点を当てるように促すモデルも採用する。
WMT 14 En-Fr, WMT 16 En-De, WMT 16 En-Ro, LDC En-Zh 翻訳タスクの実験結果から,提案手法が高速収束速度で一貫した改善を実現することを示す。
関連論文リスト
- A Data Selection Approach for Enhancing Low Resource Machine Translation Using Cross-Lingual Sentence Representations [0.4499833362998489]
本研究は,既存のデータセットが特に騒々しい英語-マラティー語対の事例に焦点を当てた。
データ品質問題の影響を軽減するために,言語間文表現に基づくデータフィルタリング手法を提案する。
その結果,IndicSBERTによるベースラインポストフィルタよりも翻訳品質が大幅に向上した。
論文 参考訳(メタデータ) (2024-09-04T13:49:45Z) - TasTe: Teaching Large Language Models to Translate through Self-Reflection [82.83958470745381]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて顕著な性能を示した。
本稿では,自己回帰を通した翻訳を行うTasTeフレームワークを提案する。
WMT22ベンチマークにおける4つの言語方向の評価結果から,既存の手法と比較して,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-06-12T17:21:21Z) - Active Learning for Neural Machine Translation [0.0]
NMTツールキットのJoey NMTにActive Learningと呼ばれるテクニックを組み込んで、低リソース言語翻訳の十分な精度と堅牢な予測を行った。
この研究は、トランスフォーマーベースのNMTシステム、ベースラインモデル(BM)、フルトレーニングモデル(FTM)、アクティブラーニング最小信頼ベースモデル(ALLCM)、アクティブラーニングマージンサンプリングベースモデル(ALMSM)を用いて、英語をヒンディー語に翻訳する。
論文 参考訳(メタデータ) (2022-12-30T17:04:01Z) - Competency-Aware Neural Machine Translation: Can Machine Translation
Know its Own Translation Quality? [61.866103154161884]
ニューラルマシン翻訳(NMT)は、意識せずに起こる失敗に対してしばしば批判される。
本稿では,従来のNMTを自己推定器で拡張することで,新たな能力認識型NMTを提案する。
提案手法は品質評価において優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2022-11-25T02:39:41Z) - DivEMT: Neural Machine Translation Post-Editing Effort Across
Typologically Diverse Languages [5.367993194110256]
DivEMTは、ニューラルネットワーク翻訳(NMT)に関する、タイプ的かつ多様なターゲット言語に対する初めての公開後研究である。
我々は、Google Translateとオープンソースの多言語モデルmBART50の2つの最先端NTTシステムの翻訳生産性への影響を評価する。
論文 参考訳(メタデータ) (2022-05-24T17:22:52Z) - Learning to Generalize to More: Continuous Semantic Augmentation for
Neural Machine Translation [50.54059385277964]
CsaNMT(Continuous Semantic Augmentation)と呼ばれる新しいデータ拡張パラダイムを提案する。
CsaNMTは各トレーニングインスタンスを、同じ意味の下で適切なリテラル式をカバーできる隣接領域で拡張する。
論文 参考訳(メタデータ) (2022-04-14T08:16:28Z) - DEEP: DEnoising Entity Pre-training for Neural Machine Translation [123.6686940355937]
機械翻訳モデルは通常、トレーニングコーパスで稀な名前付きエンティティの翻訳を貧弱に生成することが示されている。
文中の名前付きエンティティ翻訳精度を向上させるために,大量のモノリンガルデータと知識ベースを利用するDenoising Entity Pre-training法であるDEEPを提案する。
論文 参考訳(メタデータ) (2021-11-14T17:28:09Z) - Modelling Latent Translations for Cross-Lingual Transfer [47.61502999819699]
従来のパイプラインの2つのステップ(翻訳と分類)を1つのモデルに統合する新しい手法を提案する。
我々は,多言語NLUタスクにおける新しい潜時翻訳モデルの評価を行った。
ゼロショットと数ショットの学習設定の両方で、平均2.7の精度ポイントのゲインを報告します。
論文 参考訳(メタデータ) (2021-07-23T17:11:27Z) - Phrase-level Active Learning for Neural Machine Translation [107.28450614074002]
ドメイン内データの翻訳に所定の予算を費やすことのできる,アクティブな学習環境を提案する。
我々は、人間の翻訳者へのルーティングのために、新しいドメインの未ラベルデータから全文と個々の句を選択する。
ドイツ語と英語の翻訳タスクでは,不確実性に基づく文選択法に対して,能動的学習手法が一貫した改善を実現している。
論文 参考訳(メタデータ) (2021-06-21T19:20:42Z) - Verdi: Quality Estimation and Error Detection for Bilingual [23.485380293716272]
Verdiはバイリンガルコーパスのための単語レベルおよび文レベルの後編集作業推定のための新しいフレームワークである。
バイリンガルコーパスの対称性を活用し,NMT予測器にモデルレベル二重学習を適用した。
我々の手法は競争の勝者を圧倒し、他の基準法よりも大きなマージンで上回る。
論文 参考訳(メタデータ) (2021-05-31T11:04:13Z) - Unsupervised Bitext Mining and Translation via Self-trained Contextual
Embeddings [51.47607125262885]
不整合テキストから機械翻訳(MT)のための擬似並列コーパスを作成するための教師なし手法について述べる。
我々は多言語BERTを用いて、最寄りの検索のためのソースとターゲット文の埋め込みを作成し、自己学習によりモデルを適応する。
BUCC 2017 bitextマイニングタスクで並列文ペアを抽出し,F1スコアの最大24.5ポイント増加(絶対)を従来の教師なし手法と比較して観察することで,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2020-10-15T14:04:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。