Resource theoretic efficacy of the single copy of a two-qubit entangled
state in a sequential network
- URL: http://arxiv.org/abs/2109.11433v3
- Date: Thu, 17 Nov 2022 16:21:53 GMT
- Title: Resource theoretic efficacy of the single copy of a two-qubit entangled
state in a sequential network
- Authors: Arun Kumar Das, Debarshi Das, Shiladitya Mal, Dipankar Home, and A.S.
Majumdar
- Abstract summary: We demonstrate the resource theoretic advantage of reusing a single copy of a two-qubit entangled state towards information processing.
We consider a scenario of sequential entanglement detection of a given two-qubit state by multiple independent observers on each of the two spatially separated wings.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: How best one can recycle a given quantum resource, mitigating the various
difficulties involved in its preparation and preservation, is of considerable
importance for ensuring efficient applications in quantum technology. Here we
demonstrate quantitatively the resource theoretic advantage of reusing a single
copy of a two-qubit entangled state towards information processing. To this
end, we consider a scenario of sequential entanglement detection of a given
two-qubit state by multiple independent observers on each of the two spatially
separated wings. In particular, we consider equal numbers of sequential
observers on the two wings. We first determine the upper bound on the number of
observers who can detect entanglement employing suitable entanglement witness
operators. In terms of the parameters characterizing the entanglement consumed
and the robustness of measurements, we then compare the above scenario with the
corresponding scenario involving multiple pairs of entangled qubits shared
among the two wings. This reveals a clear resource theoretic advantage of
recycling a single copy of a two-qubit entangled state in the sequential
network.
Related papers
- Experimental single-copy distillation of quantumness from higher-dimensional entanglement [0.0]
Entanglement is at the heart of quantum theory and is responsible for various quantum-enabling technologies.
We experimentally demonstrate how one may use single-copy local filtering operations to meet this requirement.
Results provide the first proof-of-principle experimental certification of the Bell-nonlocal properties of entangled states.
arXiv Detail & Related papers (2024-10-09T07:04:55Z) - Resource Theory of Imaginarity: New Distributed Scenarios [48.7576911714538]
imaginarity studies the operational value of imaginary parts in quantum states, operations, and measurements.
This arises naturally in bipartite systems where both parties work together to generate the maximum possible imaginarity on one of the subsystems.
We present a scenario that demonstrates the operational advantage of imaginarity: the discrimination of quantum channels without the aid of an ancillary system.
arXiv Detail & Related papers (2023-01-12T02:05:08Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Both qubits of the singlet state can be steered simultaneously by
multiple independent observers via sequential measurement [10.918291217470799]
A subsystem in entangled pairs can share nonlocality with multiple observers in sequence.
It is found that the two qubits in singlet state can be simultaneously steered by two sequential observers.
arXiv Detail & Related papers (2021-02-24T09:37:55Z) - Time-Dependent Dephasing and Quantum Transport [68.8204255655161]
We show that non-Markovian dephasing assisted transport manifests only in the non-symmetric configuration.
We find similar results by considering a controllable and experimentally implementable system.
arXiv Detail & Related papers (2021-02-20T22:44:08Z) - Ability of unbounded pairs of observers to achieve quantum advantage in
random access codes with a single pair of qubits [0.0]
Complications in preparing and preserving quantum correlations stimulate recycling of a single quantum resource.
We consider a scenario involving multiple independent pairs of observers acting with unbiased inputs on a single pair of spatially separated qubits sequentially.
arXiv Detail & Related papers (2021-01-04T20:33:04Z) - Entanglement purification by counting and locating errors with
entangling measurements [62.997667081978825]
We consider entanglement purification protocols for multiple copies of qubit states.
We use high-dimensional auxiliary entangled systems to learn about number and positions of errors in the noisy ensemble.
arXiv Detail & Related papers (2020-11-13T19:02:33Z) - Experimental robust self-testing of the state generated by a quantum
network [0.0]
We experimentally implement two significant building blocks of a quantum network involving two independent sources.
By extending previous self-testing techniques we provide device-independent lower bounds on the fidelity between the generated states.
This technique can find application in the certification of larger networks of different topologies.
arXiv Detail & Related papers (2020-10-15T13:28:18Z) - Finite Block Length Analysis on Quantum Coherence Distillation and
Incoherent Randomness Extraction [64.04327674866464]
We introduce a variant of randomness extraction framework where free incoherent operations are allowed before the incoherent measurement.
We show that the maximum number of random bits extractable from a given quantum state is precisely equal to the maximum number of coherent bits that can be distilled from the same state.
Remarkably, the incoherent operation classes all admit the same second order expansions.
arXiv Detail & Related papers (2020-02-27T09:48:52Z) - Quantifying the unextendibility of entanglement [13.718093420358827]
Entanglement is a striking feature of quantum mechanics, and it has a key property called unextendibility.
We present a framework for quantifying and investigating the unextendibility of general bipartite quantum states.
arXiv Detail & Related papers (2019-11-18T05:22:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.