論文の概要: Inequality Constrained Stochastic Nonlinear Optimization via Active-Set
Sequential Quadratic Programming
- arxiv url: http://arxiv.org/abs/2109.11502v1
- Date: Thu, 23 Sep 2021 17:12:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-24 15:07:18.112118
- Title: Inequality Constrained Stochastic Nonlinear Optimization via Active-Set
Sequential Quadratic Programming
- Title(参考訳): 不等式制約付き確率的非線形最適化
- Authors: Sen Na, Mihai Anitescu, Mladen Kolar
- Abstract要約: 客観的・決定論的等式と不等式制約を用いた非線形最適化問題について検討する。
本稿では,有理関数として微分可能な拡張ラグランジアンを用いて,能動型逐次適応型プログラミングアルゴリズムを提案する。
アルゴリズムは、拡張ラグランジアンのパラメータを適応的に選択し、行探索を行い、ステップサイズを決定する。
- 参考スコア(独自算出の注目度): 17.9230793188835
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We study nonlinear optimization problems with stochastic objective and
deterministic equality and inequality constraints, which emerge in numerous
applications including finance, manufacturing, power systems and, recently,
deep neural networks. We propose an active-set stochastic sequential quadratic
programming algorithm, using a differentiable exact augmented Lagrangian as the
merit function. The algorithm adaptively selects the penalty parameters of
augmented Lagrangian and performs stochastic line search to decide the
stepsize. The global convergence is established: for any initialization, the
"liminf" of the KKT residuals converges to zero almost surely. Our algorithm
and analysis further develop the prior work \cite{Na2021Adaptive} by allowing
nonlinear inequality constraints. We demonstrate the performance of the
algorithm on a subset of nonlinear problems collected in the CUTEst test set.
- Abstract(参考訳): 本研究では,金融,製造,電力システム,最近ではディープニューラルネットワークなど,多くの応用において現れる確率的目標と決定論的等式と不等式制約を用いた非線形最適化問題について検討する。
本稿では,拡張ラグランジアンをメリット関数として用いるアクティブセット確率二次計画アルゴリズムを提案する。
アルゴリズムは、拡張ラグランジアンのペナルティパラメータを適応的に選択し、確率線探索を行い、ステップサイズを決定する。
任意の初期化に対して、KKT残基の「極限」はほぼ確実にゼロに収束する。
我々のアルゴリズムと解析は、非線形不等式制約を許容することにより、先行研究である{Na2021Adaptive}をさらに発展させる。
CUTEstテストセットで収集した非線形問題のサブセットに対して,アルゴリズムの性能を示す。
関連論文リスト
- An Accelerated Block Proximal Framework with Adaptive Momentum for
Nonconvex and Nonsmooth Optimization [2.323238724742687]
非平滑および非平滑最適化のための適応モーメント(ABPL$+$)を有する加速ブロック近位線形フレームワークを提案する。
いくつかのアルゴリズムでは外挿ステップの潜在的な原因を解析し、比較プロセスの強化によってこの問題を解消する。
我々はアルゴリズムを勾配ステップと線形補間ステップの更新を含む任意のシナリオに拡張する。
論文 参考訳(メタデータ) (2023-08-23T13:32:31Z) - Constrained Optimization via Exact Augmented Lagrangian and Randomized
Iterative Sketching [55.28394191394675]
等式制約付き非線形非IBS最適化問題に対する適応的不正確なニュートン法を開発した。
ベンチマーク非線形問題,LVMのデータによる制約付きロジスティック回帰,PDE制約問題において,本手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-28T06:33:37Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
我々は、制約付き最適化のための一階アルゴリズムと非滑らかなシステムの間で、新しい一階アルゴリズムのクラスを設計する。
これらのアルゴリズムの重要な性質は、制約がスパース変数の代わりに速度で表されることである。
論文 参考訳(メタデータ) (2023-02-01T08:50:48Z) - A Sequential Quadratic Programming Method with High Probability Complexity Bounds for Nonlinear Equality Constrained Stochastic Optimization [2.3814052021083354]
制約関数値と導関数は利用可能であると仮定されるが、対象関数とその関連する導関数のプログラミング近似のみを計算することができる。
1次定常性を近似するためにアルゴリズムの反復複雑性に縛られる高い確率が導出される。
論文 参考訳(メタデータ) (2023-01-01T21:46:50Z) - Fully Stochastic Trust-Region Sequential Quadratic Programming for
Equality-Constrained Optimization Problems [62.83783246648714]
目的と決定論的等式制約による非線形最適化問題を解くために,逐次2次プログラミングアルゴリズム(TR-StoSQP)を提案する。
アルゴリズムは信頼領域半径を適応的に選択し、既存の直線探索StoSQP方式と比較して不確定なヘッセン行列を利用することができる。
論文 参考訳(メタデータ) (2022-11-29T05:52:17Z) - Zeroth and First Order Stochastic Frank-Wolfe Algorithms for Constrained
Optimization [13.170519806372075]
2組の制約を持つ凸最適化の問題は、半定値プログラミングの文脈で頻繁に発生する。
最初の制約セットへのプロジェクションは困難であるため、プロジェクションフリーなアルゴリズムを探索する必要がある。
提案アルゴリズムの有効性は, スパース行列推定, 半定緩和によるクラスタリング, および一様スペースカット問題の適用性について検証した。
論文 参考訳(メタデータ) (2021-07-14T08:01:30Z) - Optimal Rates for Random Order Online Optimization [60.011653053877126]
敵が損失関数を選択できるカテットガルバー2020onlineについて検討するが、一様にランダムな順序で提示される。
2020onlineアルゴリズムが最適境界を達成し,安定性を著しく向上することを示す。
論文 参考訳(メタデータ) (2021-06-29T09:48:46Z) - A Stochastic Sequential Quadratic Optimization Algorithm for Nonlinear
Equality Constrained Optimization with Rank-Deficient Jacobians [11.03311584463036]
滑らかな非線形等式制約最適化問題の解法として, 逐次2次最適化アルゴリズムを提案する。
数値実験の結果、このアルゴリズムは一般的な代替品と比較して優れた性能を示すことが示された。
論文 参考訳(メタデータ) (2021-06-24T13:46:52Z) - An Asymptotically Optimal Primal-Dual Incremental Algorithm for
Contextual Linear Bandits [129.1029690825929]
複数の次元に沿った最先端技術を改善する新しいアルゴリズムを提案する。
非文脈線形帯域の特別な場合において、学習地平線に対して最小限の最適性を確立する。
論文 参考訳(メタデータ) (2020-10-23T09:12:47Z) - Sequential Quadratic Optimization for Nonlinear Equality Constrained
Stochastic Optimization [10.017195276758454]
この設定では、客観的関数と微分値を明示的に計算することは難しそうだと仮定する。
最先端のライン探索SQPアルゴリズムをモデルとした決定論的設定のためのアルゴリズムを提案する。
数値実験の結果は,提案手法の実用性を示すものである。
論文 参考訳(メタデータ) (2020-07-20T23:04:26Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。