Engineering dynamical couplings for quantum thermodynamic tasks
- URL: http://arxiv.org/abs/2109.11510v1
- Date: Thu, 23 Sep 2021 17:25:54 GMT
- Title: Engineering dynamical couplings for quantum thermodynamic tasks
- Authors: Matteo Carrega, Loris Maria Cangemi, Giulio De Filippis, Vittorio
Cataudella, Giuliano Benenti, Maura Sassetti
- Abstract summary: We show that the couplings modulation can be suitably engineered to perform thermodynamic tasks.
Our work paves the way for the use of optimal control techniques for heat engines and refrigerators working in regimes beyond standard approaches.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Describing the thermodynamic properties of quantum systems far from
equilibrium is challenging, in particular when the system is strongly coupled
to its environment, or when memory effects cannot be neglected. Here, we
address such regimes when the system-baths couplings are periodically modulated
in time. We show that the couplings modulation, usually associated to a purely
dissipative effect when done nonadiabatically, can be suitably engineered to
perform thermodynamic tasks. In particular, asymmetric couplings to two heat
baths can be used to extract heat from the cold reservoir and to realize an
ideal heat rectifier, where the heat current can be blocked either in the
forward or in the reverse configuration by simply tuning the frequency of the
couplings modulation. Interestingly, both effects take place in the
low-temperature, quantum non Markovian regime. Our work paves the way for the
use of optimal control techniques for heat engines and refrigerators working in
regimes beyond standard approaches.
Related papers
- Thermodynamic Roles of Quantum Environments: From Heat Baths to Work Reservoirs [49.1574468325115]
Environments in quantum thermodynamics usually take the role of heat baths.
We show that within the same model, the environment can take three different thermodynamic roles.
The exact role of the environment is determined by the strength and structure of the coupling.
arXiv Detail & Related papers (2024-08-01T15:39:06Z) - Synchronization-induced violation of thermodynamic uncertainty relations [0.0]
We explore the possibility that TURs are violated, particularly for quantum systems, leading to accurate currents at lower cost.
Our results pave the way for the use of synchronization in the thermodynamics of precision.
arXiv Detail & Related papers (2024-04-25T18:00:03Z) - All-thermal reversal of heat currents using qutrits [0.0]
We propose the coherent coupling of two qutrits as a simultaneous refrigerator and heat pump of two reservoirs forming a system.
This occurs thanks to the coupling to two other reservoirs which are out of equilibrium but do not inject heat in the system.
arXiv Detail & Related papers (2024-03-17T09:54:06Z) - Dynamically Emergent Quantum Thermodynamics: Non-Markovian Otto Cycle [49.1574468325115]
We revisit the thermodynamic behavior of the quantum Otto cycle with a focus on memory effects and strong system-bath couplings.
Our investigation is based on an exact treatment of non-Markovianity by means of an exact quantum master equation.
arXiv Detail & Related papers (2023-08-18T11:00:32Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Multilevel quantum thermodynamic swap engines [0.0]
We study energetic exchanges and fluctuations in two-stroke quantum thermodynamic engines.
We identify three regimes of operation, present the thermodynamic uncertainty relations between the entropy production and the signal-to-noise ratio of work and heat.
Our results bridge the gap between two-qubit and two-mode bosonic swap engines.
arXiv Detail & Related papers (2021-06-30T08:39:30Z) - Geometric Heat Pump: Controlling Thermal Transport with Time-dependent
Modulations [21.544545839943446]
We review the emergence and development of this so called geometric heat pump''
The generalization from the adiabatic to the non-adiabatic regime and the application of control theory are also discussed.
arXiv Detail & Related papers (2021-06-25T14:24:42Z) - Optomechanical cooling with coherent and squeezed light: the
thermodynamic cost of opening the heat valve [0.12647816797166164]
Ground-state cooling of mechanical motion by coupling to a driven optical cavity has been demonstrated in various optomechanical systems.
We provide a so far missing thermodynamic performance analysis of optomechanical sideband cooling in terms of a heat valve.
arXiv Detail & Related papers (2021-03-05T11:04:24Z) - Maximal power for heat engines: role of asymmetric interaction times [110.83289076967895]
We introduce the idea of adjusting the interaction time asymmetry in order to optimize the engine performance.
Distinct optimization protocols are analyzed in the framework of thermodynamics.
arXiv Detail & Related papers (2020-12-16T22:26:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.