Synchronization-induced violation of thermodynamic uncertainty relations
- URL: http://arxiv.org/abs/2404.16936v2
- Date: Thu, 12 Sep 2024 14:09:34 GMT
- Title: Synchronization-induced violation of thermodynamic uncertainty relations
- Authors: Luca Razzoli, Matteo Carrega, Fabio Cavaliere, Giuliano Benenti, Maura Sassetti,
- Abstract summary: We explore the possibility that TURs are violated, particularly for quantum systems, leading to accurate currents at lower cost.
Our results pave the way for the use of synchronization in the thermodynamics of precision.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fluctuations affect the functionality of nanodevices. Thermodynamic uncertainty relations (TURs), derived within the framework of stochastic thermodynamics, show that a minimal amount of dissipation is required to obtain a given relative energy current dispersion, that is, current precision has a thermodynamic cost. It is therefore of great interest to explore the possibility that TURs are violated, particularly for quantum systems, leading to accurate currents at lower cost. Here, we show that two quantum harmonic oscillators are synchronized by coupling to a common thermal environment, at strong dissipation and low temperature. In this regime, periodically modulated couplings to a second thermal reservoir, breaking time-reversal symmetry and taking advantage of non-Markovianity of this latter reservoir, lead to strong violation of TURs for local work currents, while maintaining finite output power. Our results pave the way for the use of synchronization in the thermodynamics of precision.
Related papers
- Violation of the Thermodynamic Uncertainty Relation in Quantum Collisional Models [0.0]
We investigate the thermodynamic uncertainty relation within a quantum collisional model.
For the Markovian dynamics, we examine the classical and quantum TUR bounds in the non-equilibrium steady-state regime.
For the two non-Markovian approaches, we find that the violation of the finite-time TUR bound is highly dependent on the type of non-Markovianity.
arXiv Detail & Related papers (2024-12-31T19:58:54Z) - Thermodynamic Roles of Quantum Environments: From Heat Baths to Work Reservoirs [49.1574468325115]
Environments in quantum thermodynamics usually take the role of heat baths.
We show that within the same model, the environment can take three different thermodynamic roles.
The exact role of the environment is determined by the strength and structure of the coupling.
arXiv Detail & Related papers (2024-08-01T15:39:06Z) - Reassessing quantum-thermodynamic enhancements in continuous thermal machines [0.0]
coherence has been shown to impact the operational capabilities of quantum systems performing thermodynamic tasks.
We show that for steady-state quantum thermal machines that interact weakly with thermal reservoirs and work sources, the presence of coherence induced by perturbations guarantees a genuine thermodynamic advantage.
arXiv Detail & Related papers (2024-03-28T10:03:23Z) - Quantum Thermodynamic Uncertainty Relations, Generalized Current
Fluctuations and Nonequilibrium Fluctuation-Dissipation Inequalities [0.0]
Thermodynamic uncertainty relations (TURs) represent one of the few broad-based and fundamental relations in our toolbox for tackling the thermodynamics of nonequilibrium systems.
We show how TURs are rooted in the quantum uncertainty principles and the fluctuation-dissipation inequalities (FDI) under fully nonequilibrium conditions.
arXiv Detail & Related papers (2022-06-20T15:26:53Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Clean two-dimensional Floquet time-crystal [68.8204255655161]
We consider the two-dimensional quantum Ising model, in absence of disorder, subject to periodic imperfect global spin flips.
We show by a combination of exact diagonalization and tensor-network methods that the system can sustain a spontaneously broken discrete time-translation symmetry.
We observe a non-perturbative change in the decay rate of the order parameter, which is related to the long-lived stability of the magnetic domains in 2D.
arXiv Detail & Related papers (2022-05-10T13:04:43Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Unified thermodynamic-kinetic uncertainty relation [3.480626767752489]
We derive a tighter bound on the precision of currents in terms of both thermodynamic and kinetic quantities.
The unified thermodynamic-kinetic uncertainty relation leads to a tighter classical speed limit.
The proposed framework can be extended to apply to state observables and systems with unidirectional transitions.
arXiv Detail & Related papers (2022-03-22T07:22:16Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Quantum thermoelectric transmission functions with minimal current fluctuations [0.0]
Thermodynamic uncertainty relations (TURs) represent a benchmark result in nonequilibrium physics.
We rigorously demonstrate that the transmission function which maximizes the reliability of thermoelectric devices is a collection of boxcar functions.
This allows us to show that TURs can be violated by arbitrarily large amounts, depending on the temperature and chemical potential gradients.
arXiv Detail & Related papers (2021-06-18T16:18:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.