Sample Efficient Model Evaluation
- URL: http://arxiv.org/abs/2109.12043v1
- Date: Fri, 24 Sep 2021 16:03:58 GMT
- Title: Sample Efficient Model Evaluation
- Authors: Emine Yilmaz, Peter Hayes, Raza Habib, Jordan Burgess, David Barber
- Abstract summary: Given a collection of unlabelled data points, we address how to select which subset to label to best estimate test metrics.
We consider two sampling based approaches, namely the well-known Importance Sampling and we introduce a novel application of Poisson Sampling.
- Score: 30.72511219329606
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Labelling data is a major practical bottleneck in training and testing
classifiers. Given a collection of unlabelled data points, we address how to
select which subset to label to best estimate test metrics such as accuracy,
$F_1$ score or micro/macro $F_1$. We consider two sampling based approaches,
namely the well-known Importance Sampling and we introduce a novel application
of Poisson Sampling. For both approaches we derive the minimal error sampling
distributions and how to approximate and use them to form estimators and
confidence intervals. We show that Poisson Sampling outperforms Importance
Sampling both theoretically and experimentally.
Related papers
- Downstream-Pretext Domain Knowledge Traceback for Active Learning [138.02530777915362]
We propose a downstream-pretext domain knowledge traceback (DOKT) method that traces the data interactions of downstream knowledge and pre-training guidance.
DOKT consists of a traceback diversity indicator and a domain-based uncertainty estimator.
Experiments conducted on ten datasets show that our model outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-07-20T01:34:13Z) - On diffusion-based generative models and their error bounds: The log-concave case with full convergence estimates [5.13323375365494]
We provide theoretical guarantees for the convergence behaviour of diffusion-based generative models under strongly log-concave data.
Our class of functions used for score estimation is made of Lipschitz continuous functions avoiding any Lipschitzness assumption on the score function.
This approach yields the best known convergence rate for our sampling algorithm.
arXiv Detail & Related papers (2023-11-22T18:40:45Z) - Data Pruning via Moving-one-Sample-out [61.45441981346064]
We propose a novel data-pruning approach called moving-one-sample-out (MoSo)
MoSo aims to identify and remove the least informative samples from the training set.
Experimental results demonstrate that MoSo effectively mitigates severe performance degradation at high pruning ratios.
arXiv Detail & Related papers (2023-10-23T08:00:03Z) - Improved Active Learning via Dependent Leverage Score Sampling [8.400581768343804]
We show how to obtain improved active learning methods in the agnostic (adversarial noise) setting.
We propose an easily implemented method based on the emphpivotal sampling algorithm
In comparison to independent sampling, our method reduces the number of samples needed to reach a given target accuracy by up to $50%$.
arXiv Detail & Related papers (2023-10-08T01:51:30Z) - Entropy-based Training Methods for Scalable Neural Implicit Sampler [15.978655106034113]
Efficiently sampling from un-normalized target distributions is a fundamental problem in scientific computing and machine learning.
In this paper, we propose an efficient and scalable neural implicit sampler that overcomes these limitations.
Our sampler can generate large batches of samples with low computational costs by leveraging a neural transformation that directly maps easily sampled latent vectors to target samples.
arXiv Detail & Related papers (2023-06-08T05:56:05Z) - Detecting Adversarial Data by Probing Multiple Perturbations Using
Expected Perturbation Score [62.54911162109439]
Adversarial detection aims to determine whether a given sample is an adversarial one based on the discrepancy between natural and adversarial distributions.
We propose a new statistic called expected perturbation score (EPS), which is essentially the expected score of a sample after various perturbations.
We develop EPS-based maximum mean discrepancy (MMD) as a metric to measure the discrepancy between the test sample and natural samples.
arXiv Detail & Related papers (2023-05-25T13:14:58Z) - Label-Noise Learning with Intrinsically Long-Tailed Data [65.41318436799993]
We propose a learning framework for label-noise learning with intrinsically long-tailed data.
Specifically, we propose two-stage bi-dimensional sample selection (TABASCO) to better separate clean samples from noisy samples.
arXiv Detail & Related papers (2022-08-21T07:47:05Z) - POODLE: Improving Few-shot Learning via Penalizing Out-of-Distribution
Samples [19.311470287767385]
We propose to use out-of-distribution samples, i.e., unlabeled samples coming from outside the target classes, to improve few-shot learning.
Our approach is simple to implement, agnostic to feature extractors, lightweight without any additional cost for pre-training, and applicable to both inductive and transductive settings.
arXiv Detail & Related papers (2022-06-08T18:59:21Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
We take a two-step approach by first modeling the probability distribution and then sampling from that model.
We show that these models can approximate a large class of densities concisely using few evaluations, and present a simple algorithm to effectively sample from these models.
arXiv Detail & Related papers (2021-10-20T12:25:22Z) - Unrolling Particles: Unsupervised Learning of Sampling Distributions [102.72972137287728]
Particle filtering is used to compute good nonlinear estimates of complex systems.
We show in simulations that the resulting particle filter yields good estimates in a wide range of scenarios.
arXiv Detail & Related papers (2021-10-06T16:58:34Z) - Learning Entangled Single-Sample Distributions via Iterative Trimming [28.839136703139225]
We analyze a simple and computationally efficient method based on iteratively trimming samples and re-estimating the parameter on the trimmed sample set.
We show that the method in logarithmic iterations outputs an estimation whose error only depends on the noise level of the $lceil alpha n rceil$-th noisiest data point.
arXiv Detail & Related papers (2020-04-20T18:37:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.