Normal ordered exponential approach to thermal properties and
time-correlation functions: General theory and simple examples
- URL: http://arxiv.org/abs/2109.12228v1
- Date: Fri, 24 Sep 2021 23:04:16 GMT
- Title: Normal ordered exponential approach to thermal properties and
time-correlation functions: General theory and simple examples
- Authors: Marcel Nooijen and Songhao Bao
- Abstract summary: A normal ordered exponential parametrization is used to obtain equations for thermal one-and two-particle reduced density matrices.
Free energies, partition functions and entropy for both Fermionic (electronic) and Bosonic (vibrational) Hamiltonians are also obtained.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A normal ordered exponential parametrization is used to obtain equations for
thermal one-and two-particle reduced density matrices, as well as free
energies, partition functions and entropy for both Fermionic (electronic) and
Bosonic (vibrational) Hamiltonians. A first principles derivation of the
equations, relying only on a simple Wick's theorem and starting from the
differential equation $\frac{d \hat{D}}{d \beta}= - (\hat{H}-\mu
\hat{N})\hat{D}$, is presented that yields a differential equation for the
amplitudes representing density cumulants, as well as the grand potential. In
contrast to other approaches reported in the literature the theory does not use
perturbation theory in the interaction picture and an integral formulation as a
starting point, but rather requires a propagation of the resulting differential
equation for the amplitudes. While the theory is applicable to general classes
of many-body problems in principle, here, the theory is illustrated using
simple model systems. For one-body Fermionic Hamiltonians, Fermi-Dirac one-body
reduced density matrices are recovered for the grand-canonical formulation. For
multidimensional harmonic oscillators numerically exact results are obtained
using the thermal normal ordered exponential (TNOE) approach. As an application
of the related time-dependent formulation numerically exact
time-autocorrelation functions and absorption spectra are obtained for harmonic
Franck Condon problems. These examples illustrate the basic soundness of the
scheme and are used for pedagogical purposes. Other approaches in the
literature are only discussed briefly and no detailed comparative discussion is
attempted.
Related papers
- Quantum Simulation of Nonlinear Dynamical Systems Using Repeated Measurement [42.896772730859645]
We present a quantum algorithm based on repeated measurement to solve initial-value problems for nonlinear ordinary differential equations.
We apply this approach to the classic logistic and Lorenz systems in both integrable and chaotic regimes.
arXiv Detail & Related papers (2024-10-04T18:06:12Z) - Closed-form solutions for the Salpeter equation [41.94295877935867]
We study the propagator of the $1+1$ dimensional Salpeter Hamiltonian, describing a relativistic quantum particle with no spin.
The analytical extension of the Hamiltonian in the complex plane allows us to formulate the equivalent problem, namely the B"aumer equation.
This B"aumera corresponds to the Green function of a relativistic diffusion process that interpolates between Cauchy for small times and Gaussian diffusion for large times.
arXiv Detail & Related papers (2024-06-26T15:52:39Z) - Cavity QED materials: Comparison and validation of two linear response theories at arbitrary light-matter coupling strengths [41.94295877935867]
We develop a linear response theory for materials collectively coupled to a cavity that is valid in all regimes of light-matter coupling.
We compare two different approaches to obtain thermal Green functions.
We provide a detailed application of the theory to the Quantum Hall effect and to a collection of magnetic models.
arXiv Detail & Related papers (2024-06-17T18:00:07Z) - Fourier Neural Differential Equations for learning Quantum Field
Theories [57.11316818360655]
A Quantum Field Theory is defined by its interaction Hamiltonian, and linked to experimental data by the scattering matrix.
In this paper, NDE models are used to learn theory, Scalar-Yukawa theory and Scalar Quantum Electrodynamics.
The interaction Hamiltonian of a theory can be extracted from network parameters.
arXiv Detail & Related papers (2023-11-28T22:11:15Z) - Causal Modeling with Stationary Diffusions [89.94899196106223]
We learn differential equations whose stationary densities model a system's behavior under interventions.
We show that they generalize to unseen interventions on their variables, often better than classical approaches.
Our inference method is based on a new theoretical result that expresses a stationarity condition on the diffusion's generator in a reproducing kernel Hilbert space.
arXiv Detail & Related papers (2023-10-26T14:01:17Z) - Initial value formulation of a quantum damped harmonic oscillator [0.18416014644193066]
We study the initial state-dependence, decoherence, and thermalization of a quantum damped harmonic oscillator.
We find that the dynamics must include a non-vanishing noise term to yield physical results for the purity.
We briefly consider time-nonlocal dissipation as well, to show that the fluctuation-dissipation relation is satisfied for a specific choice of dissipation kernels.
arXiv Detail & Related papers (2023-03-08T19:03:12Z) - An alternative derivation of orbital-free density functional theory [0.0]
Polymer self-consistent field theory techniques are used to derive quantum density functional theory.
The equations are shown to be equivalent to Kohn-Sham density functional theory.
arXiv Detail & Related papers (2022-11-20T22:16:08Z) - Field-theoretical approach to open quantum systems and the Lindblad
equation [0.0]
We develop a field-theoretical approach to open quantum systems based on condensed-matter many-body methods.
Applying a condensed-matter pole or, equivalently, a quasi-type approximation, equivalent to the usual assumption of a timescale separation, we derive a master equation of the Markov type.
arXiv Detail & Related papers (2022-02-10T18:04:19Z) - Phase-space matrix representation of differential equations for
obtaining the energy spectrum of model quantum systems [0.0]
We develop a method to find the eigenvalues and eigenfunctions of the 1-dimensional time independent Schr"odinger equation for quantum model systems.
arXiv Detail & Related papers (2021-08-25T21:59:16Z) - An exact kernel framework for spatio-temporal dynamics [0.04297070083645048]
A kernel-based framework for system dynamics analysis is introduced.
It applies to situations when the underlying system dynamics are governed by a dynamic equation.
arXiv Detail & Related papers (2020-11-13T10:32:34Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.