Auditing AI models for Verified Deployment under Semantic Specifications
- URL: http://arxiv.org/abs/2109.12456v1
- Date: Sat, 25 Sep 2021 22:53:24 GMT
- Title: Auditing AI models for Verified Deployment under Semantic Specifications
- Authors: Homanga Bharadhwaj, De-An Huang, Chaowei Xiao, Anima Anandkumar,
Animesh Garg
- Abstract summary: AuditAI bridges the gap between interpretable formal verification and scalability.
We show how AuditAI allows us to obtain controlled variations for verification and certified training while addressing the limitations of verifying using only pixel-space perturbations.
- Score: 65.12401653917838
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Auditing trained deep learning (DL) models prior to deployment is vital in
preventing unintended consequences. One of the biggest challenges in auditing
is in understanding how we can obtain human-interpretable specifications that
are directly useful to the end-user. We address this challenge through a
sequence of semantically-aligned unit tests, where each unit test verifies
whether a predefined specification (e.g., accuracy over 95%) is satisfied with
respect to controlled and semantically aligned variations in the input space
(e.g., in face recognition, the angle relative to the camera). We perform these
unit tests by directly verifying the semantically aligned variations in an
interpretable latent space of a generative model. Our framework, AuditAI,
bridges the gap between interpretable formal verification and scalability. With
evaluations on four different datasets, covering images of towers, chest
X-rays, human faces, and ImageNet classes, we show how AuditAI allows us to
obtain controlled variations for verification and certified training while
addressing the limitations of verifying using only pixel-space perturbations. A
blog post accompanying the paper is at this link
https://developer.nvidia.com/blog/nvidia-research-auditing-ai-models-for-verified-deployment-under-s emantic-specifications
Related papers
- Unsupervised Model Diagnosis [49.36194740479798]
This paper proposes Unsupervised Model Diagnosis (UMO) to produce semantic counterfactual explanations without any user guidance.
Our approach identifies and visualizes changes in semantics, and then matches these changes to attributes from wide-ranging text sources.
arXiv Detail & Related papers (2024-10-08T17:59:03Z) - CableInspect-AD: An Expert-Annotated Anomaly Detection Dataset [14.246172794156987]
$textitCableInspect-AD$ is a high-quality dataset created and annotated by domain experts from Hydro-Qu'ebec, a Canadian public utility.
This dataset includes high-resolution images with challenging real-world anomalies, covering defects with varying severity levels.
We present a comprehensive evaluation protocol based on cross-validation to assess models' performances.
arXiv Detail & Related papers (2024-09-30T14:50:13Z) - GeneralAD: Anomaly Detection Across Domains by Attending to Distorted Features [68.14842693208465]
GeneralAD is an anomaly detection framework designed to operate in semantic, near-distribution, and industrial settings.
We propose a novel self-supervised anomaly generation module that employs straightforward operations like noise addition and shuffling to patch features.
We extensively evaluated our approach on ten datasets, achieving state-of-the-art results in six and on-par performance in the remaining.
arXiv Detail & Related papers (2024-07-17T09:27:41Z) - Importance of Disjoint Sampling in Conventional and Transformer Models for Hyperspectral Image Classification [2.1223532600703385]
This paper presents an innovative disjoint sampling approach for training SOTA models on Hyperspectral image classification (HSIC) tasks.
By separating training, validation, and test data without overlap, the proposed method facilitates a fairer evaluation of how well a model can classify pixels it was not exposed to during training or validation.
This rigorous methodology is critical for advancing SOTA models and their real-world application to large-scale land mapping with Hyperspectral sensors.
arXiv Detail & Related papers (2024-04-23T11:40:52Z) - Unsupervised Continual Anomaly Detection with Contrastively-learned
Prompt [80.43623986759691]
We introduce a novel Unsupervised Continual Anomaly Detection framework called UCAD.
The framework equips the UAD with continual learning capability through contrastively-learned prompts.
We conduct comprehensive experiments and set the benchmark on unsupervised continual anomaly detection and segmentation.
arXiv Detail & Related papers (2024-01-02T03:37:11Z) - AES Systems Are Both Overstable And Oversensitive: Explaining Why And
Proposing Defenses [66.49753193098356]
We investigate the reason behind the surprising adversarial brittleness of scoring models.
Our results indicate that autoscoring models, despite getting trained as "end-to-end" models, behave like bag-of-words models.
We propose detection-based protection models that can detect oversensitivity and overstability causing samples with high accuracies.
arXiv Detail & Related papers (2021-09-24T03:49:38Z) - Self-Supervised Contrastive Learning for Unsupervised Phoneme
Segmentation [37.054709598792165]
The model is a convolutional neural network that operates directly on the raw waveform.
It is optimized to identify spectral changes in the signal using the Noise-Contrastive Estimation principle.
At test time, a peak detection algorithm is applied over the model outputs to produce the final boundaries.
arXiv Detail & Related papers (2020-07-27T12:10:21Z) - Robust Question Answering Through Sub-part Alignment [53.94003466761305]
We model question answering as an alignment problem.
We train our model on SQuAD v1.1 and test it on several adversarial and out-of-domain datasets.
arXiv Detail & Related papers (2020-04-30T09:10:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.