論文の概要: Self-Replicating Neural Programs
- arxiv url: http://arxiv.org/abs/2109.12786v1
- Date: Mon, 27 Sep 2021 04:08:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-29 05:24:40.298894
- Title: Self-Replicating Neural Programs
- Title(参考訳): 自己複製型ニューラルプログラム
- Authors: Samuel Schmidgall
- Abstract要約: この作業では、ニューラルネットワークは、自身の出力のみを入力として使用してトレーニングするコードを複製するように訓練される。
神経プログラムにおける進化的自己複製のパラダイムでは、プログラムパラメータが変更され、プログラム自体をより効率的に訓練する能力が生殖の成功に繋がる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, a neural network is trained to replicate the code that trains
it using only its own output as input. A paradigm for evolutionary
self-replication in neural programs is introduced, where program parameters are
mutated, and the ability for the program to more efficiently train itself leads
to greater reproductive success. This evolutionary paradigm is demonstrated to
produce more efficient learning in organisms from a setting without any
explicit guidance, solely based on natural selection favoring organisms with
faster reproductive maturity.
- Abstract(参考訳): この作業では、ニューラルネットワークは、自身の出力のみを入力として使用してトレーニングするコードを複製するように訓練される。
神経プログラムにおける進化的自己複製のパラダイムでは、プログラムパラメータが変更され、プログラム自体をより効率的に訓練する能力が生殖の成功に繋がる。
この進化パラダイムは、生殖成熟が早い生物を優先する自然選択のみに基づいて、明示的な指導なしに、環境から有機体においてより効率的な学習を生み出すことが示される。
関連論文リスト
- Fast gradient-free activation maximization for neurons in spiking neural networks [5.805438104063613]
このようなループのための効率的な設計のフレームワークを提案する。
トレーニング中の人工ニューロンの最適刺激の変化を追跡する。
この洗練された最適刺激の形成は、分類精度の増大と関連している。
論文 参考訳(メタデータ) (2023-12-28T18:30:13Z) - Towards Self-Assembling Artificial Neural Networks through Neural
Developmental Programs [10.524752369156339]
生物学的神経系は、現在の人工ニューラルネットワークと根本的に異なる方法で生成される。
対照的に、生物学的神経系は動的自己組織化過程を通じて成長する。
論文 参考訳(メタデータ) (2023-07-17T01:58:52Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - The Predictive Forward-Forward Algorithm [79.07468367923619]
本稿では,ニューラルネットワークにおける信頼割当を行うための予測フォワード(PFF)アルゴリズムを提案する。
我々は,有向生成回路と表現回路を同時に同時に学習する,新しい動的リカレントニューラルネットワークを設計する。
PFFは効率よく学習し、学習信号を伝達し、フォワードパスのみでシナプスを更新する。
論文 参考訳(メタデータ) (2023-01-04T05:34:48Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
神経科学の基本的な目標は、神経活動と行動の関係を理解することである。
我々は,ハエが自然に生み出す行動からなる新しいマルチモーダルデータセットを作成した。
このデータセットと新しい拡張セットは、神経科学における自己教師あり学習手法の適用を加速することを約束します。
論文 参考訳(メタデータ) (2021-11-29T15:27:51Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
動的環境におけるエラー(バックプロップ)のバックプロパゲーションを伴わない行動駆動型生成モデルの学習のための計算フレームワークを提案する。
我々は、まばらな報酬でも機能するインテリジェントエージェントを開発し、推論として計画の認知理論からインスピレーションを得ている。
我々のエージェントの堅牢な性能は、神経推論と学習のためのバックプロップフリーアプローチがゴール指向の行動を促進するという有望な証拠を提供する。
論文 参考訳(メタデータ) (2021-07-10T19:02:27Z) - Truly Sparse Neural Networks at Scale [2.2860412844991655]
私たちは、表現力の観点から訓練された史上最大のニューラルネットワークをトレーニングします。
われわれのアプローチは、環境に優しい人工知能時代の道を歩みながら、最先端の性能を持っている。
論文 参考訳(メタデータ) (2021-02-02T20:06:47Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
本稿では,RNNの入出力動作だけでなく,内部ネットワークのダイナミクスも学習できる新しいトレーニング戦略を提案する。
提案手法は、RNNを訓練し、生理学的にインスパイアされた神経モデルの内部ダイナミクスと出力信号を同時に再現する。
注目すべきは、トレーニングアルゴリズムがニューロンの小さなサブセットの活性に依存する場合であっても、内部動力学の再現が成功することである。
論文 参考訳(メタデータ) (2020-05-05T14:16:54Z) - Mimicking Evolution with Reinforcement Learning [10.35437633064506]
人工的な人間のような知性を発達させる道は、自然のシミュレーションで進化の過程を模倣することでもたらされると我々は主張する。
この研究は、進化的リワード(EvER)を通じて進化的リワード(Evolutionary Reward)を提案する。
論文 参考訳(メタデータ) (2020-03-31T18:16:53Z) - Task-Independent Spiking Central Pattern Generator: A Learning-Based
Approach [2.709804256642196]
中央パターンジェネレータは、人間や一部の動物の移動に責任があると考えられているニューラルネットワークである。
本稿では,タスクに依存しない,生物学的に妥当な,学習方法に依存した,中央パターン生成システムを構築するための新しい汎用フレームワークを提案する。
使用済みのロボットは、異なる速度で安定した歩行をし、同じ歩行サイクルで速度を変えることができたため、非常に有望だ。
論文 参考訳(メタデータ) (2020-03-17T00:01:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。