論文の概要: Deep Learning Based Resource Assignment for Wireless Networks
- arxiv url: http://arxiv.org/abs/2109.12970v1
- Date: Mon, 27 Sep 2021 11:51:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-28 15:04:09.672023
- Title: Deep Learning Based Resource Assignment for Wireless Networks
- Title(参考訳): 無線ネットワークのための深層学習に基づくリソース割り当て
- Authors: Minseok Kim, Hoon Lee, Hongju Lee, and Inkyu Lee
- Abstract要約: 本稿では,無線ネットワークにおける二項代入問題に対する深層学習手法を提案する。
提案手法の有効性を,様々なシナリオで検証した。
- 参考スコア(独自算出の注目度): 25.138235752143586
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies a deep learning approach for binary assignment problems in
wireless networks, which identifies binary variables for permutation matrices.
This poses challenges in designing a structure of a neural network and its
training strategies for generating feasible assignment solutions. To this end,
this paper develop a new Sinkhorn neural network which learns a non-convex
projection task onto a set of permutation matrices. An unsupervised training
algorithm is proposed where the Sinkhorn neural network can be applied to
network assignment problems. Numerical results demonstrate the effectiveness of
the proposed method in various network scenarios.
- Abstract(参考訳): 本稿では,置換行列の2値変数を同定する無線ネットワークにおける2値割当問題に対する深層学習手法について検討する。
これは、ニューラルネットワークの構造と、実行可能な代入ソリューションを生成するためのトレーニング戦略を設計する際の課題を提起する。
そこで本稿では,非凸射影タスクを一連の置換行列に学習する新しいシンクホーンニューラルネットワークを開発した。
シンクホーンニューラルネットワークをネットワーク割り当て問題に適用可能な教師なしトレーニングアルゴリズムを提案する。
各種ネットワークシナリオにおける提案手法の有効性を数値解析により検証した。
関連論文リスト
- On the Principles of ReLU Networks with One Hidden Layer [0.0]
バックプロパゲーションアルゴリズムによって得られる解のメカニズムをどう解釈するかは、まだ不明である。
理論的にも実験的にも, 1次元入力のトレーニング解が完全に理解できることが示されている。
論文 参考訳(メタデータ) (2024-11-11T05:51:11Z) - Coding schemes in neural networks learning classification tasks [52.22978725954347]
完全接続型広義ニューラルネットワーク学習タスクについて検討する。
ネットワークが強力なデータ依存機能を取得することを示す。
驚くべきことに、内部表現の性質は神経の非線形性に大きく依存する。
論文 参考訳(メタデータ) (2024-06-24T14:50:05Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Credit Assignment for Trained Neural Networks Based on Koopman Operator
Theory [3.130109807128472]
ニューラルネットワークのクレジット割り当て問題は、最終的な出力に対する各ネットワークコンポーネントのクレジットを評価することを指す。
本稿では,ニューラルネットワークの信頼割当問題に対する線形力学の代替的視点について述べる。
典型的なニューラルネットワークを用いた実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2022-12-02T06:34:27Z) - Simple initialization and parametrization of sinusoidal networks via
their kernel bandwidth [92.25666446274188]
従来の活性化機能を持つネットワークの代替として、活性化を伴う正弦波ニューラルネットワークが提案されている。
まず,このような正弦波ニューラルネットワークの簡易版を提案する。
次に、ニューラルタンジェントカーネルの観点からこれらのネットワークの挙動を分析し、そのカーネルが調整可能な帯域幅を持つ低域フィルタを近似することを実証する。
論文 参考訳(メタデータ) (2022-11-26T07:41:48Z) - Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
本稿では,暗黙的ニューラルネットワークのトレーニングとロバスト性検証のための理論的および計算的枠組みを提案する。
組込みネットワークを導入し、組込みネットワークを用いて、元のネットワークの到達可能な集合の超近似として$ell_infty$-normボックスを提供することを示す。
MNISTデータセット上で暗黙的なニューラルネットワークをトレーニングするためにアルゴリズムを適用し、我々のモデルの堅牢性と、文献における既存のアプローチを通じてトレーニングされたモデルを比較する。
論文 参考訳(メタデータ) (2022-08-08T03:13:24Z) - Fast Adaptation with Linearized Neural Networks [35.43406281230279]
ニューラルネットワークの線形化の帰納的バイアスについて検討し,全ネットワーク関数の驚くほどよい要約であることを示した。
この発見に触発されて,これらの帰納的バイアスをネットワークのヤコビアンから設計されたカーネルを通してガウス過程に埋め込む手法を提案する。
この設定では、領域適応は不確実性推定を伴う解釈可能な後方推論の形式を取る。
論文 参考訳(メタデータ) (2021-03-02T03:23:03Z) - Local Critic Training for Model-Parallel Learning of Deep Neural
Networks [94.69202357137452]
そこで我々は,局所的批判訓練と呼ばれる新しいモデル並列学習手法を提案する。
提案手法は,畳み込みニューラルネットワーク(CNN)とリカレントニューラルネットワーク(RNN)の両方において,階層群の更新プロセスの分離に成功したことを示す。
また,提案手法によりトレーニングされたネットワークを構造最適化に利用できることを示す。
論文 参考訳(メタデータ) (2021-02-03T09:30:45Z) - A biologically plausible neural network for local supervision in
cortical microcircuits [17.00937011213428]
我々は、明示的なエラーやバックプロパゲーションを避けるニューラルネットワークを訓練するためのアルゴリズムを導出する。
我々のアルゴリズムは、大脳皮質の接続構造や学習規則に顕著な類似性を持つニューラルネットワークにマップする。
論文 参考訳(メタデータ) (2020-11-30T17:35:22Z) - Backprojection for Training Feedforward Neural Networks in the Input and
Feature Spaces [12.323996999894002]
本稿では,バックプロパゲーションよりもかなり高速なフィードフォワードニューラルネットワークのトレーニングアルゴリズムを提案する。
提案アルゴリズムは、それぞれバックプロジェクションとカーネルバックプロジェクションと呼ばれる入力空間と特徴空間の両方に利用できる。
論文 参考訳(メタデータ) (2020-04-05T20:53:11Z) - Binary Neural Networks: A Survey [126.67799882857656]
バイナリニューラルネットワークは、リソース制限されたデバイスにディープモデルをデプロイするための有望なテクニックとして機能する。
バイナライゼーションは必然的に深刻な情報損失を引き起こし、さらに悪いことに、その不連続性はディープネットワークの最適化に困難をもたらす。
本稿では,2項化を直接実施するネイティブソリューションと,量子化誤差の最小化,ネットワーク損失関数の改善,勾配誤差の低減といった手法を用いて,これらのアルゴリズムを探索する。
論文 参考訳(メタデータ) (2020-03-31T16:47:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。