論文の概要: Structure Learning via Mutual Information
- arxiv url: http://arxiv.org/abs/2409.14235v1
- Date: Sat, 21 Sep 2024 19:33:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 23:37:15.893926
- Title: Structure Learning via Mutual Information
- Title(参考訳): 相互情報による構造学習
- Authors: Jeremy Nixon,
- Abstract要約: 本稿では、相互情報(MI)機能を用いて、データ内の機能的関係を学習し、表現するためのフレームワークを提案する。
本手法は,より効率的で一般化可能な学習アルゴリズムを実現することを目的としている。
- 参考スコア(独自算出の注目度): 0.8702432681310399
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel approach to machine learning algorithm design based on information theory, specifically mutual information (MI). We propose a framework for learning and representing functional relationships in data using MI-based features. Our method aims to capture the underlying structure of information in datasets, enabling more efficient and generalizable learning algorithms. We demonstrate the efficacy of our approach through experiments on synthetic and real-world datasets, showing improved performance in tasks such as function classification, regression, and cross-dataset transfer. This work contributes to the growing field of metalearning and automated machine learning, offering a new perspective on how to leverage information theory for algorithm design and dataset analysis and proposing new mutual information theoretic foundations to learning algorithms.
- Abstract(参考訳): 本稿では,情報理論,特に相互情報(MI)に基づく機械学習アルゴリズム設計への新たなアプローチを提案する。
我々はMIに基づく特徴量を用いたデータ中の機能的関係の学習と表現のためのフレームワークを提案する。
本手法は,より効率的で一般化可能な学習アルゴリズムを実現することを目的としている。
提案手法の有効性を,合成および実世界のデータセットを用いた実験により実証し,機能分類や回帰,データセット間転送といったタスクの性能向上を示す。
この研究はメタラーニングと自動機械学習の分野の発展に貢献し、アルゴリズムの設計とデータセット分析に情報理論をどのように活用するかの新しい視点を提供し、新しい相互情報理論の基礎を学習アルゴリズムに提案する。
関連論文リスト
- Deep Learning and Machine Learning -- Object Detection and Semantic Segmentation: From Theory to Applications [17.571124565519263]
本は、機械学習とディープラーニングにおける最先端の進歩をカバーしている。
畳み込みニューラルネットワーク(CNN)、YOLOアーキテクチャ、DeTRのようなトランスフォーマーベースのアプローチに重点を置いている。
また、人工知能(AI)技術と拡張オブジェクト検出のための大規模言語モデルの統合も検討している。
論文 参考訳(メタデータ) (2024-10-21T02:10:49Z) - A Unified Framework for Neural Computation and Learning Over Time [56.44910327178975]
Hamiltonian Learningはニューラルネットワークを"時間とともに"学習するための新しい統合フレームワーク
i)外部ソフトウェアソルバを必要とせずに統合できる、(ii)フィードフォワードおよびリカレントネットワークにおける勾配に基づく学習の概念を一般化する、(iii)新しい視点で開放する、という微分方程式に基づいている。
論文 参考訳(メタデータ) (2024-09-18T14:57:13Z) - Extraction of Research Objectives, Machine Learning Model Names, and Dataset Names from Academic Papers and Analysis of Their Interrelationships Using LLM and Network Analysis [0.0]
本研究では,研究論文からタスクや機械学習手法,データセット名を抽出する手法を提案する。
提案手法の表現抽出性能は,Llama3を用いた場合,様々なカテゴリでFスコアが0.8を超えている。
ファイナンシャルドメイン論文のベンチマーク結果は,本手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-08-22T03:10:52Z) - Benchmark on Drug Target Interaction Modeling from a Structure Perspective [48.60648369785105]
薬物と標的の相互作用の予測は、薬物の発見と設計に不可欠である。
グラフニューラルネットワーク(GNN)やトランスフォーマーに基づく最近の手法は、さまざまなデータセットで例外的なパフォーマンスを示している。
我々は,GNNベースと暗黙的(トランスフォーマーベース)構造学習アルゴリズムを多用することにより,構造の観点からの薬物-標的相互作用モデリングの総合的な調査とベンチマークを行う。
論文 参考訳(メタデータ) (2024-07-04T16:56:59Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - An Entropy-Based Model for Hierarchical Learning [3.1473798197405944]
実世界のデータセットに共通する特徴は、データドメインがマルチスケールであることである。
本稿では,このマルチスケールデータ構造を利用した学習モデルを提案する。
階層的な学習モデルは、人間の論理的かつ進歩的な学習メカニズムにインスパイアされている。
論文 参考訳(メタデータ) (2022-12-30T13:14:46Z) - Latent Properties of Lifelong Learning Systems [59.50307752165016]
本稿では,生涯学習アルゴリズムの潜伏特性を推定するために,アルゴリズムに依存しないサロゲート・モデリング手法を提案する。
合成データを用いた実験により,これらの特性を推定するためのアプローチを検証する。
論文 参考訳(メタデータ) (2022-07-28T20:58:13Z) - CateCom: a practical data-centric approach to categorization of
computational models [77.34726150561087]
本稿では,物理モデルとデータ駆動型計算モデルのランドスケープを整理する取り組みについて述べる。
オブジェクト指向設計の概念を適用し、オープンソース協調フレームワークの基礎を概説する。
論文 参考訳(メタデータ) (2021-09-28T02:59:40Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
本稿では,エッジ支援型民主化学習機構であるEdge-DemLearnの階層的学習構造を示す。
また、Edge-DemLearnを柔軟なモデルトレーニングメカニズムとして検証し、リージョンに分散制御と集約の方法論を構築する。
論文 参考訳(メタデータ) (2020-12-01T11:46:03Z) - An Information-Theoretic Perspective on Overfitting and Underfitting [0.0]
本稿では,機械学習における過度な適合と不適合を理解するための情報理論フレームワークを提案する。
任意の分類アルゴリズムがデータセットを過度に適合させるかどうかを判断する際の形式的不確定性を証明する。
論文 参考訳(メタデータ) (2020-10-12T23:24:47Z) - Clustering Analysis of Interactive Learning Activities Based on Improved
BIRCH Algorithm [0.0]
良質な学習行動の構築は、学習者の学習過程と学習効果にとって非常に重要であり、データ駆動型教育意思決定の鍵となる基礎である。
多期間・多コースのオンライン学習行動ビッグデータセットを取得し,学習行動を多次元学習インタラクションアクティビティとして記述する必要がある。
ランダムウォーキング戦略に基づくBIRCHクラスタリングの改良アルゴリズムを設計し、キーラーニングインタラクションアクティビティの検索評価とデータを実現する。
論文 参考訳(メタデータ) (2020-10-08T07:46:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。